14 research outputs found

    Systematically Quantifying Cryptanalytic Non-Linearities in Strong PUFs

    Get PDF
    Physically Unclonable Functions~(PUFs) with large challenge space~(also called Strong PUFs) are promoted for usage in authentications and various other cryptographic and security applications. In order to qualify for these cryptographic applications, the Boolean functions realized by PUFs need to possess a high non-linearity~(NL). However, with a large challenge space~(usually ≥64\geq 64 bits), measuring NL by classical techniques like Walsh transformation is computationally infeasible. In this paper, we propose the usage of a heuristic-based measure called non-homomorphicity test which estimates the NL of Boolean functions with high accuracy in spite of not needing access to the entire challenge-response set. We also combine our analysis with a technique used in linear cryptanalysis, called Piling-up lemma, to measure the NL of popular PUF compositions. As a demonstration to justify the soundness of the metric, we perform extensive experimentation by first estimating the NL of constituent Arbiter/Bistable Ring PUFs using the non-homomorphicity test, and then applying them to quantify the same for their XOR compositions namely XOR Arbiter PUFs and XOR Bistable Ring PUF. Our findings show that the metric explains the impact of various parameter choices of these PUF compositions on the NL obtained and thus promises to be used as an important objective criterion for future efforts to evaluate PUF designs. While the framework is not representative of the machine learning robustness of PUFs, it can be a useful complementary tool to analyze the cryptanalytic strengths of PUF primitives

    Low Power Memory/Memristor Devices and Systems

    Get PDF
    This reprint focusses on achieving low-power computation using memristive devices. The topic was designed as a convenient reference point: it contains a mix of techniques starting from the fundamental manufacturing of memristive devices all the way to applications such as physically unclonable functions, and also covers perspectives on, e.g., in-memory computing, which is inextricably linked with emerging memory devices such as memristors. Finally, the reprint contains a few articles representing how other communities (from typical CMOS design to photonics) are fighting on their own fronts in the quest towards low-power computation, as a comparison with the memristor literature. We hope that readers will enjoy discovering the articles within

    Security and Privacy for Modern Wireless Communication Systems

    Get PDF
    The aim of this reprint focuses on the latest protocol research, software/hardware development and implementation, and system architecture design in addressing emerging security and privacy issues for modern wireless communication networks. Relevant topics include, but are not limited to, the following: deep-learning-based security and privacy design; covert communications; information-theoretical foundations for advanced security and privacy techniques; lightweight cryptography for power constrained networks; physical layer key generation; prototypes and testbeds for security and privacy solutions; encryption and decryption algorithm for low-latency constrained networks; security protocols for modern wireless communication networks; network intrusion detection; physical layer design with security consideration; anonymity in data transmission; vulnerabilities in security and privacy in modern wireless communication networks; challenges of security and privacy in node–edge–cloud computation; security and privacy design for low-power wide-area IoT networks; security and privacy design for vehicle networks; security and privacy design for underwater communications networks

    Understanding Quantum Technologies 2022

    Full text link
    Understanding Quantum Technologies 2022 is a creative-commons ebook that provides a unique 360 degrees overview of quantum technologies from science and technology to geopolitical and societal issues. It covers quantum physics history, quantum physics 101, gate-based quantum computing, quantum computing engineering (including quantum error corrections and quantum computing energetics), quantum computing hardware (all qubit types, including quantum annealing and quantum simulation paradigms, history, science, research, implementation and vendors), quantum enabling technologies (cryogenics, control electronics, photonics, components fabs, raw materials), quantum computing algorithms, software development tools and use cases, unconventional computing (potential alternatives to quantum and classical computing), quantum telecommunications and cryptography, quantum sensing, quantum technologies around the world, quantum technologies societal impact and even quantum fake sciences. The main audience are computer science engineers, developers and IT specialists as well as quantum scientists and students who want to acquire a global view of how quantum technologies work, and particularly quantum computing. This version is an extensive update to the 2021 edition published in October 2021.Comment: 1132 pages, 920 figures, Letter forma

    Early Childhood Science Education: Research Trends in Learning and Teaching

    Get PDF
    This volume consists of a collection of articles that touch on very different research aspects within a broad scientific field known in recent years as Early Childhood Science Education. The field has gradually emerged from the interaction between three distinct scientific areas of theory and research: Early Childhood Education, Psychology, which is oriented towards the study of learning, and Science Education. At the center of the progress in this field are efforts to initiate children aged 4-8 years in the Physical and Biological Sciences. A wide range of research themes have developed around this main axis: children's mental representations of phenomena of the natural world and scientific concepts, the study of the implementation and effectiveness of specific teaching activities related to curricula or activities focusing on the specific characteristics of teaching processes such as reasoning, explanation, communication, interaction or argumentation, the issue of teachers' relevance to the teaching of science, the use of pecialized teaching materials, the emergence of the issue of scientific skills, the highly contemporary issue of the differentiation and inclusion of children in the world of science, important socio-scientific issues, the role of family-related factors etc. Within this context, this collective book aims to reflect contemporary research trends in the field of Early Childhood Science Education

    3D-in-2D Displays for ATC.

    Get PDF
    This paper reports on the efforts and accomplishments of the 3D-in-2D Displays for ATC project at the end of Year 1. We describe the invention of 10 novel 3D/2D visualisations that were mostly implemented in the Augmented Reality ARToolkit. These prototype implementations of visualisation and interaction elements can be viewed on the accompanying video. We have identified six candidate design concepts which we will further research and develop. These designs correspond with the early feasibility studies stage of maturity as defined by the NASA Technology Readiness Level framework. We developed the Combination Display Framework from a review of the literature, and used it for analysing display designs in terms of display technique used and how they are combined. The insights we gained from this framework then guided our inventions and the human-centered innovation process we use to iteratively invent. Our designs are based on an understanding of user work practices. We also developed a simple ATC simulator that we used for rapid experimentation and evaluation of design ideas. We expect that if this project continues, the effort in Year 2 and 3 will be focus on maturing the concepts and employment in a operational laboratory settings
    corecore