130,345 research outputs found

    Formalization of Transform Methods using HOL Light

    Full text link
    Transform methods, like Laplace and Fourier, are frequently used for analyzing the dynamical behaviour of engineering and physical systems, based on their transfer function, and frequency response or the solutions of their corresponding differential equations. In this paper, we present an ongoing project, which focuses on the higher-order logic formalization of transform methods using HOL Light theorem prover. In particular, we present the motivation of the formalization, which is followed by the related work. Next, we present the task completed so far while highlighting some of the challenges faced during the formalization. Finally, we present a roadmap to achieve our objectives, the current status and the future goals for this project.Comment: 15 Pages, CICM 201

    Towards the Formalization of Fractional Calculus in Higher-Order Logic

    Full text link
    Fractional calculus is a generalization of classical theories of integration and differentiation to arbitrary order (i.e., real or complex numbers). In the last two decades, this new mathematical modeling approach has been widely used to analyze a wide class of physical systems in various fields of science and engineering. In this paper, we describe an ongoing project which aims at formalizing the basic theories of fractional calculus in the HOL Light theorem prover. Mainly, we present the motivation and application of such formalization efforts, a roadmap to achieve our goals, current status of the project and future milestones.Comment: 9 page

    Some fundamental properties on the sampling free nabla Laplace transform

    Full text link
    Discrete fractional order systems have attracted more and more attention in recent years. Nabla Laplace transform is an important tool to deal with the problem of nabla discrete fractional order systems, but there is still much room for its development. In this paper, 14 lemmas are listed to conclude the existing properties and 14 theorems are developed to describe the innovative features. On one hand, these properties make the N-transform more effective and efficient. On the other hand, they enrich the discrete fractional order system theor

    The near shift-invariance of the dual-tree complex wavelet transform revisited

    Get PDF
    The dual-tree complex wavelet transform (DTCWT) is an enhancement of the conventional discrete wavelet transform (DWT) due to a higher degree of shift-invariance and a greater directional selectivity, finding its applications in signal and image processing. This paper presents a quantitative proof of the superiority of the DTCWT over the DWT in case of modulated wavelets.Comment: 15 page
    corecore