24,759 research outputs found

    Formal Analysis of Pilot Error with Agent Safety Logic

    Get PDF
    In this paper, we show that modal logic is a valuable tool for the formal analysis of human errors in aviation safety. We develop a modal logic called Agent Safety Logic (ASL), based on epistemic logic, doxastic logic, and a safety logic grounded in a ight safety manual. We identify a class of human error that has contributed to several aviation incidents involving a specific kind of pilot knowledge failure, and formally analyze it. The use of ASL suggests how future avionics might increase aircraft safety

    Investigating airplane safety and security against insider threats using logical modeling

    Get PDF
    In this paper we consider the limits of formal modeling of infrastructures and the application of social explanation for the analysis of insider threats in security and safety critical areas. As an area of study for the analysis we take examples from aviation, firstly since incidents are typically well-documented and secondly since it is an important area per se. In March 2015, a Germanwings flight crashed in the French Alps in what is quite firmly believed to have been intentionally caused by the copilot who locked the pilot out of the cockpit and programmed the autopilot on constant descent. We investigate the security controls and policies in airplanes against insider threats using logical modeling in Isabelle

    Managing Environmental, Health, and Safety Risks: A Comparative Assessment of the Minerals Management Service and Other Agencies

    Get PDF
    This study compares and contrasts regulatory and related practices—in particular, regulatory decisionmaking, risk assessment and planning processes, inspection and compliance, and organization structure, budgets, and training—of the Minerals Management Service (MMS, now the Bureau of Ocean Energy Management, Regulation, and Enforcement, or BOEMRE) with those of the Federal Aviation Administration (FAA) and the Environmental Protection Agency (EPA). Comparing MMS practices with those of other federal agencies that also manage low-probability but high-consequence environmental risks provides a basis for identifying opportunities for enhancing regulatory capacity and safety performance in managing deepwater energy exploration and production. Our research finds important differences in processes for setting standards; peer review contribution to the rulemaking process; establishment of tolerable risk thresholds; and training of key staff. The paper concludes with several recommendations for how various EPA and FAA practices might be modified and used at BOEMRE to strengthen its regulatory and risk management processes.Minerals Management Service, Federal Aviation Administration, Environmental Protection Agency, risk management

    Air Traffic Management Safety Challenges

    No full text
    The primary goal of the Air Traffic Management (ATM) system is to control accident risk. ATM safety has improved over the decades for many reasons, from better equipment to additional safety defences. But ATM safety targets, improving on current performance, are now extremely demanding. Safety analysts and aviation decision-makers have to make safety assessments based on statistically incomplete evidence. If future risks cannot be estimated with precision, then how is safety to be assured with traffic growth and operational/technical changes? What are the design implications for the USA’s ‘Next Generation Air Transportation System’ (NextGen) and Europe’s Single European Sky ATM Research Programme (SESAR)? ATM accident precursors arise from (eg) pilot/controller workload, miscommunication, and lack of upto- date information. Can these accident precursors confidently be ‘designed out’ by (eg) better system knowledge across ATM participants, automatic safety checks, and machine rather than voice communication? Future potentially hazardous situations could be as ‘messy’ in system terms as the Überlingen mid-air collision. Are ATM safety regulation policies fit for purpose: is it more and more difficult to innovate, to introduce new technologies and novel operational concepts? Must regulators be more active, eg more inspections and monitoring of real operational and organisational practices

    Air Traffic Safety: continued evolution or a new Paradigm.

    Get PDF
    The context here is Transport Risk Management. Is the philosophy of Air Traffic Safety different from other modes of transport? – yes, in many ways, it is. The focus is on Air Traffic Management (ATM), covering (eg) air traffic control and airspace structures, which is the part of the aviation system that is most likely to be developed through new paradigms. The primary goal of the ATM system is to control accident risk. ATM safety has improved over the decades for many reasons, from better equipment to additional safety defences. But ATM safety targets, improving on current performance, are now extremely demanding. What are the past and current methodologies for ATM risk assessment; and will they work effectively for the kinds of future systems that people are now imagining and planning? The title contrasts ‘Continued Evolution’ and a ‘New Paradigm’. How will system designers/operators assure safety with traffic growth and operational/technical changes that are more than continued evolution from the current system? What are the design implications for ‘new paradigms’, such as the USA’s ‘Next Generation Air Transportation System’ (NextGen) and Europe’s Single European Sky ATM Research Programme (SESAR)? Achieving and proving safety for NextGen and SESAR is an enormously tough challenge. For example, it will need to cover system resilience, human/automation issues, software/hardware performance/ground/air protection systems. There will be a need for confidence building programmes regarding system design/resilience, eg Human-in-the-Loop simulations with ‘seeded errors’

    Human Performance Contributions to Safety in Commercial Aviation

    Get PDF
    In the commercial aviation domain, large volumes of data are collected and analyzed on the failures and errors that result in infrequent incidents and accidents, but in the absence of data on behaviors that contribute to routine successful outcomes, safety management and system design decisions are based on a small sample of non- representative safety data. Analysis of aviation accident data suggests that human error is implicated in up to 80% of accidents, which has been used to justify future visions for aviation in which the roles of human operators are greatly diminished or eliminated in the interest of creating a safer aviation system. However, failure to fully consider the human contributions to successful system performance in civil aviation represents a significant and largely unrecognized risk when making policy decisions about human roles and responsibilities. Opportunities exist to leverage the vast amount of data that has already been collected, or could be easily obtained, to increase our understanding of human contributions to things going right in commercial aviation. The principal focus of this assessment was to identify current gaps and explore methods for identifying human success data generated by the aviation system, from personnel and within the supporting infrastructure

    The future of UAS: standards, regulations, and operational experiences [workshop report]

    Get PDF
    This paper presents the outcomes of "The Future of UAS: Standards, Regulations and Operational Experiences" workshop, held on the 7th and 8th of December, 2006 in Brisbane, Queensland, Australia. The goal of the workshop was to identify recent international activities in the Unmanned Airborne Systems (UAS) airspace integration problem. The workshop attracted a broad cross-section of the UAS community, including: airspace and safety regulators, developers, operators and researchers. The three themes of discussion were: progress in the development of standards and regulations, lessons learnt from recent operations, and advances in new technologies. This paper summarises the activities of the workshop and explores the important outcomes and trends as perceived by the authors

    Occupational injuries among construction workers at the Chep Lap Kok Airport construction site, Hong Kong : analysis of accident rates, and the association between injuries, error types and their contributing factors : a thesis presented in partial fulfilment of the requirements for the degree of Master of Aviation at Massey University, Palmerston North, New Zealand

    Get PDF
    Accidents on construction sites are a major cause of morbidity and mortality in Hong Kong. This study investigated the likely causes of occupational injuries that were present among the construction workers during the construction of the new Chep Lap Kok (CLK) Airport in Hong Kong. In order to accumulate the requisite information, 1648 accident investigation reports in a four-year period (1993-1996) were reviewed. The first part of the study described the pattern and magnitude of occupational injuries among the CLK construction workers and compared the accident rates of the CLK workers with those of the construction industry as a whole in Hong Kong. The study examined the effects of the workplace infrastructure at CLK in order to explain why this site presented fewer work place injuries and accidents than other workplaces. The second part of the research used these injury and accident occurrences as the basis to construct the causes of accidents and injuries within an error causation classification system. The results showed that at CLK, the commonest workplace injury was contusion & crushing which appeared to be due to mistakes made through lapses in memory often caused by pressure of work being imposed on the employee. This section also indicated what types of errors were most closely associated with what kinds of injuries and what conditions were most likely to trigger these types of events. Among the major associations were links between contusion and crushing and violation error, perceptual error; between memory lapse and work pressure, equipment deficiencies, poor working environment, fatigue, and between violation error and work pressure. The research suggested that work pressure was an important contributing factor to construction injury and it increased the prevalence of a human error type namely, memory lapse many fold. The outcomes from this study provide important new information on the causes and types of errors which have led to occupational injuries among construction workers in Hong Kong. A better understanding of the human factors-based causes of accidents and injuries in the construction industry and an inculcation of a safety culture on construction sites are critically important in the reduction of the rate of construction accidents and improvement of workers' human performance. The results should assist the construction industry in the designing accident prevention training and education strategies, estimating human error probabilities, and the monitoring organizational safety performance

    Cities and Drones: What Cities Need to Know about Unmanned Aerial Vehicles (UAVs)

    Get PDF
    NLC's municipal guide, Cities and Drones, is designed to serve as a primer on drones for local officials, providing insight into the recently released federal rules relating to drone operation, as well as offering suggestions for how local governments can craft their own drone ordinances to encourage innovation while also protecting their cities.Drones have the potential to revolutionize many industries and city services, particularly as their technology advances. There are many applications for drones within the public sector at the local and state level. Drones can be used for law enforcement and firefighting, as rural ambulances, and for inspections, environmental monitoring, and disaster management. Any commercial arena that involves outdoor photography or visual inspection will likely be experimenting with drones in the near future, as will retailers who want to speed up package delivery.However, drones also present challenges. There are some safety issues, for instance, when operators fly their drones over people or near planes. City residents often have privacy concerns when any small device hovering nearby could potentially be taking photos or video. The FAA's final rule on drones left some opportunity for city governments to legislate on this issue. Rather than ban them outright, city officials should consider how this new technology might serve residents or enhance city services
    • 

    corecore