22 research outputs found

    Non-perturbative QCD Correlation Functions

    Get PDF
    Functional methods provide access to the non-perturbative regime of quantum chromo- dynamics. Hence, they allow investigating confinement and chiral symmetry breaking. In this dissertation, correlation functions of Yang-Mills theory and unquenched two-flavor QCD are computed from the functional renormalization group. Employing a self-consistent vertex expansion of the effective action, Yang-Mills correlation functions are obtained in four as well as in three spacetime dimensions. To this end, confinement and Slavnov-Taylor identities are discussed. Our numerical results show very good agreement with corresponding lattice results. Next, unquenched two-flavor QCD is considered where it is shown that the unquenched two-flavor gluon propagator is insensitive to the pion mass. Furthermore, the necessity for consistent truncations is emphasized. Finally, correlation functions of finite-temperature Yang-Mills theory are computed in a truncation that includes the splitting of the gluon field into directions that are transverse and longitudinal to the heat bath. In particular, it includes the splitting of the three- and four-gluon vertices. The obtained gluon propagator allows to extract a Debye screening mass that coincides with the hard thermal loop screening mass at high temperatures, but is meaningful also at temperatures below the phase transition temperature

    FeynOnium: Using FeynCalc for automatic calculations in Nonrelativistic Effective Field Theories

    Get PDF
    We present new results on FeynOnium, an ongoing project to develop a general purpose software toolkit for semi-automatic symbolic calculations in nonrelativistic Effective Field Theories (EFTs). Building upon FeynCalc, an existing Mathematica package for symbolic evaluation of Feynman diagrams, we have created a powerful framework for automatizing calculations in nonrelativistic EFTs (NREFTs) at tree- and 1-loop level. This is achieved by exploiting the novel features of FeynCalc that support manipulations of Cartesian tensors, Pauli matrices and nonstandard loop integrals. Additional operations that are common in nonrelativistic EFT calculations are implemented in a dedicated add-on called FeynOnium. While our current focus is on EFTs for strong interactions of heavy quarks, extensions to other systems that admit a nonrelativistic EFT description are planned for the future. All our codes are open-source and publicly available. Furthermore, we provide several example calculations that demonstrate how FeynOnium can be employed to reproduce known results from the literature.Comment: 61 pages, no figures, matches the version accepted in JHEP. To obtain the programs, see https://github.com/FeynCal

    Quantum Gravity from dynamical metric fluctuations

    Full text link
    In this contribution, we discuss the asymptotic safety scenario for quantum gravity by evaluating the correlation functions of dynamical metric fluctuations. This is done with a functional renormalisation group approach that disentangles dynamical metric fluctuations from the background metric. We detail the derivation of the respective flow equations on space-time manifolds with Euclidean and Lorentzian signatures and discuss the diffeomorphism symmetry constraints on the flow as well as the convergence of systematic vertex expansion schemes. We then proceed with a comprehensive review of results of momentum-dependent correlation functions at vanishing cutoff scale, the phase structure of the asymptotically safe Standard Model, and spectral properties of asymptotically safe gravity from direct computations in space-times with Lorentzian signatures such as the graviton spectral function.Comment: 47 pages, 15 figures. Invited chapter for the "Handbook of Quantum Gravity" (Eds. C. Bambi, L. Modesto and I.L. Shapiro, Springer Singapore

    Refined Gribov-Zwanziger theory coupled to scalar fields in the Landau gauge

    Full text link
    The Refined Gribov-Zwanziger (RGZ) action in the Landau gauge accounts for the existence of infinitesimal Gribov copies as well as the dynamical formation of condensates in the infrared of Euclidean Yang-Mills theories. We couple scalar fields to the RGZ action and compute the one-loop scalar propagator in the adjoint representation of the gauge group. We compare our findings with existing lattice data. The fate of BRST symmetry in this model is discussed, and we provide a comparison to a previous proposal for a non-minimal coupling between matter and the RGZ action. We find good agreement with the lattice data of the scalar propagator for the values of the mass parameters that fit the RGZ gluon propagator to the lattice. This suggests that the non-perturbative information carried by the gluon propagator in the RGZ framework provides a suitable mechanism to reproduce the behavior of correlation functions of colored matter fields in the infrared.Comment: 18 pages + refs.; 6 figures; Matches the journal versio

    Four-quark scatterings in QCD I

    Full text link
    We investigate dynamical chiral symmetry breaking and the emergence of mesonic bound states from the infrared dynamics of four-quark scatterings. Both phenomena originate from the resonant scalar-pseudoscalar channel of the four-quark scatterings, and we compute the functional renormalisation group (fRG) flows of the Fierz-complete four-quark interaction of up and down quarks with its tt channel momentum dependence. This is done in the isospin symmetric case, also including the flow of the quark two-point function. This system can be understood as the fRG analogues of the complete Bethe-Salpeter equations and quark gap equation. The pole mass of the pion is determined from both direct calculations of the four-quark flows in the Minkowski regime of momenta and the analytic continuation based on results in the Euclidean regime, which are consistent with each other.Comment: 26 pages, 20 figures, 3 tables; v2: minor typos correcte
    corecore