212 research outputs found

    Uniform Interpolation and Forgetting for ALC Ontologies with ABoxes

    Get PDF
    Uniform interpolation and the dual task of forgetting restrict the ontology to a specified subset of concept and role names. This makes them useful tools for ontology analysis, ontology evolution and information hiding. Most previous research focused on uniform interpolation of TBoxes. However, especially for applications in privacy and information hiding, it is essential that uniform interpolation methods can deal with ABoxes as well. We present the first method that can compute uniform interpolants of any ALC ontology with ABoxes. ABoxes bring their own challenges when computing uniform interpolants, possibly requiring disjunctive statements or nominals in the resulting ABox. Our method can compute representations of uniform interpolants in ALCO. An evaluation on realistic ontologies shows that these uniform interpolants can be practically computed, and can often even be presented in pure ALC

    Reasoning-Supported Quality Assurance for Knowledge Bases

    Get PDF
    The increasing application of ontology reuse and automated knowledge acquisition tools in ontology engineering brings about a shift of development efforts from knowledge modeling towards quality assurance. Despite the high practical importance, there has been a substantial lack of support for ensuring semantic accuracy and conciseness. In this thesis, we make a significant step forward in ontology engineering by developing a support for two such essential quality assurance activities

    Proceedings of the Joint Automated Reasoning Workshop and Deduktionstreffen: As part of the Vienna Summer of Logic – IJCAR 23-24 July 2014

    Get PDF
    Preface For many years the British and the German automated reasoning communities have successfully run independent series of workshops for anybody working in the area of automated reasoning. Although open to the general public they addressed in the past primarily the British and the German communities, respectively. At the occasion of the Vienna Summer of Logic the two series have a joint event in Vienna as an IJCAR workshop. In the spirit of the two series there will be only informal proceedings with abstracts of the works presented. These are collected in this document. We have tried to maintain the informal open atmosphere of the two series and have welcomed in particular research students to present their work. We have solicited for all work related to automated reasoning and its applications with a particular interest in work-in-progress and the presentation of half-baked ideas. As in the previous years, we have aimed to bring together researchers from all areas of automated reasoning in order to foster links among researchers from various disciplines; among theoreticians, implementers and users alike, and among international communities, this year not just the British and German communities

    Practical uniform interpolation and forgetting for ALC TBoxes with applications to logical difference

    Get PDF
    Copyright © 2014, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved. We develop a clausal resolution-based approach for computing uniform interpolants of TBoxes formulated in the description logic ALC when such uniform interpolants exist. We also present an experimental evaluation of our approach and of its application to the logical difference problem for real-life ALC ontologies. Our results indicate that in many practical cases uniform interpolants exist and that they can be computed with the presented algorithm

    Towards Ontology Reshaping for KG Generation with User-in-the-Loop: Applied to Bosch Welding

    Full text link
    Knowledge graphs (KG) are used in a wide range of applications. The automation of KG generation is very desired due to the data volume and variety in industries. One important approach of KG generation is to map the raw data to a given KG schema, namely a domain ontology, and construct the entities and properties according to the ontology. However, the automatic generation of such ontology is demanding and existing solutions are often not satisfactory. An important challenge is a trade-off between two principles of ontology engineering: knowledge-orientation and data-orientation. The former one prescribes that an ontology should model the general knowledge of a domain, while the latter one emphasises on reflecting the data specificities to ensure good usability. We address this challenge by our method of ontology reshaping, which automates the process of converting a given domain ontology to a smaller ontology that serves as the KG schema. The domain ontology can be designed to be knowledge-oriented and the KG schema covers the data specificities. In addition, our approach allows the option of including user preferences in the loop. We demonstrate our on-going research on ontology reshaping and present an evaluation using real industrial data, with promising results
    • …
    corecore