7,450 research outputs found

    Profiling a decade of information systems frontiers’ research

    Get PDF
    This article analyses the first ten years of research published in the Information Systems Frontiers (ISF) from 1999 to 2008. The analysis of the published material includes examining variables such as most productive authors, citation analysis, universities associated with the most publications, geographic diversity, authors’ backgrounds and research methods. The keyword analysis suggests that ISF research has evolved from establishing concepts and domain of information systems (IS), technology and management to contemporary issues such as outsourcing, web services and security. The analysis presented in this paper has identified intellectually significant studies that have contributed to the development and accumulation of intellectual wealth of ISF. The analysis has also identified authors published in other journals whose work largely shaped and guided the researchers published in ISF. This research has implications for researchers, journal editors, and research institutions

    Learning cultures on the move: where are we heading?

    Get PDF
    The paper analyzes the globally recognized cultural move towards a more learner-centred education and discusses the implications for the adoption of mobile technologies and design for learning. Current expectations vis-à-vis learner attributes, skills and competences are explored. The pervasiveness of mobile technologies is precipitating these developments, whilst also generating a distinct mobile culture where learners take mobility and context-awareness as starting points and become more visible as innovators, creators and producers. Language learning, one of the most popular application areas of mobile learning, provides fertile ground for the growth of this phenomenon. The paper reviews several innovative language learning applications and concludes by indicating the directions in which we are heading

    Workshop proceedings: Information Systems for Space Astrophysics in the 21st Century, volume 1

    Get PDF
    The Astrophysical Information Systems Workshop was one of the three Integrated Technology Planning workshops. Its objectives were to develop an understanding of future mission requirements for information systems, the potential role of technology in meeting these requirements, and the areas in which NASA investment might have the greatest impact. Workshop participants were briefed on the astrophysical mission set with an emphasis on those missions that drive information systems technology, the existing NASA space-science operations infrastructure, and the ongoing and planned NASA information systems technology programs. Program plans and recommendations were prepared in five technical areas: Mission Planning and Operations; Space-Borne Data Processing; Space-to-Earth Communications; Science Data Systems; and Data Analysis, Integration, and Visualization

    Tangible user interfaces : past, present and future directions

    Get PDF
    In the last two decades, Tangible User Interfaces (TUIs) have emerged as a new interface type that interlinks the digital and physical worlds. Drawing upon users' knowledge and skills of interaction with the real non-digital world, TUIs show a potential to enhance the way in which people interact with and leverage digital information. However, TUI research is still in its infancy and extensive research is required in or- der to fully understand the implications of tangible user interfaces, to develop technologies that further bridge the digital and the physical, and to guide TUI design with empirical knowledge. This paper examines the existing body of work on Tangible User In- terfaces. We start by sketching the history of tangible user interfaces, examining the intellectual origins of this field. We then present TUIs in a broader context, survey application domains, and review frame- works and taxonomies. We also discuss conceptual foundations of TUIs including perspectives from cognitive sciences, phycology, and philoso- phy. Methods and technologies for designing, building, and evaluating TUIs are also addressed. Finally, we discuss the strengths and limita- tions of TUIs and chart directions for future research

    Solar thermal power systems point-focusing thermal and electric applications projects. Volume 1: Executive summary

    Get PDF
    The activities of the Point-Focusing Thermal and Electric Applications (PETEA) project for the fiscal year 1979 are summarized. The main thrust of the PFTEA Project, the small community solar thermal power experiment, was completed. Concept definition studies included a small central receiver approach, a point-focusing distributed receiver system with central power generation, and a point-focusing distributed receiver concept with distributed power generation. The first experiment in the Isolated Application Series was initiated. Planning for the third engineering experiment series, which addresses the industrial market sector, was also initiated. In addition to the experiment-related activities, several contracts to industry were let and studies were conducted to explore the market potential for point-focusing distributed receiver (PFDR) systems. System analysis studies were completed that looked at PFDR technology relative to other small power system technology candidates for the utility market sector

    Flexible Deep Learning in Edge Computing for Internet of Things

    Get PDF
    Deep learning is a promising approach for extracting accurate information from raw sensor data from IoT devices deployed in complex environments. Because of its multilayer structure, deep learning is also appropriate for the edge computing environment. Traditional edge computing models have rigid characteristics. Flexible edge computing architecture solves rigidity in IoT edge computing. Proposed model combines deep learning into edge computing and flexible edge computing architecture using multiple agents. Since existing edge nodes have limited processing capability, we also design a novel offloading strategy to optimize the performance of IoT deep learning applications with edge computing. FEC architecture is a flexible and advanced IoT system model characterized by environment adaptation ability and user orientation ability. In the performance evaluation, we test the performance of executing deep learning tasks in FEC architecture for edge computing environment. The evaluation results show that our method outperforms other optimization solutions on deep learning for IoT

    Flexible Deep Learning in Edge Computing for Internet of Things

    Get PDF
    Deep learning is a promising approach for extracting accurate information from raw sensor data from IoT devices deployed in complex environments. Because of its multilayer structure, deep learning is also appropriate for the edge computing environment. Traditional edge computing models have rigid characteristics. Flexible edge computing architecture solves rigidity in IoT edge computing. Proposed model combines deep learning into edge computing and flexible edge computing architecture using multiple agents. Since existing edge nodes have limited processing capability, we also design a novel offloading strategy to optimize the performance of IoT deep learning applications with edge computing. FEC architecture is a flexible and advanced IoT system model characterized by environment adaptation ability and user orientation ability. In the performance evaluation, we test the performance of executing deep learning tasks in FEC architecture for edge computing environment. The evaluation results show that our method outperforms other optimization solutions on deep learning for IoT
    corecore