685 research outputs found

    Satellite remote sensing for ice sheet research

    Get PDF
    Potential research applications of satellite data over the terrestrial ice sheets of Greenland and Antarctica are assessed and actions required to ensure acquisition of relevant data and appropriate processing to a form suitable for research purposes are recommended. Relevant data include high-resolution visible and SAR imagery, infrared, passive-microwave and scatterometer measurements, and surface topography information from laser and radar altimeters

    FIREX mission requirements document for nonrenewable resources

    Get PDF
    The proposed mission requirements and a proposed experimental program for satellite synthetic aperture radar (SAR) system named FIREX (Free-Flying Imaging Radar Experiment) for nonrenewable resources is described. The recommended spacecraft minimum SAR system is a C-band imager operating in four modes: (1) low look angle HH-polarized; (2) intermediate look angle, HH-polarized; (3) intermediate look angle, IIV-polarized; and (4) high look angle HH-polarized. This SAR system is complementary to other future spaceborne imagers such as the Thematic Mapper on LANDSAT-D. A near term aircraft SAR based research program is outlined which addresses specific mission design issues such as preferred incidence angles or polarizations for geologic targets of interest

    Measuring soil moisture with spaceborne synthetic aperture radar data

    Get PDF
    This report describes the methodology and preliminary results obtained within the NEE6881S Innovation Flexible Fund project funded by the British Geological Survey (BGS) aimed at assessing the capabilities of active radar satellite imagery in deriving soil moisture values. The first part of the report introduces the project in the context of the most recent methodologies used to assess soil moisture with a particular focus on spaceborne technologies. The second part details the datasets and workflow adopted for the two case studies chosen in this work: Chobham Common and Hollin Hill, both in the UK. Around 1.7Tb of Synthetic Aperture Radar (SAR) imagery from Senintel-1 satellite have been processed to detect changes of the hydrological conditions at the two sites for the 2015-2018 period. The backscattering coefficient retrieved from Sentinel-1 images has then been compared with ground truth data on the Volumetric Water Content (VWC) and analysed against the ZOODRM recharge model. The main findings are that: the SAR signal has been able to penetrate down to a maximum depth of 15 cm in the terrain (i), the best correlation with the VWC changes is observed with the vertical transmit – vertical receive polarization of the SAR antenna (ii) and for every unit change in the backscatter signal, VWC varies by about 25% to 33% at Chobham Common and ~20% to ~50% at Hollin Hill which translate into a sensitivity of 0.04 dB/[vol.%] to 0.03 dB/[vol.%] and 0.05 dB/[vol.%] to 0.02 dB/[vol.%], respectively. The Discussion and Conclusions detail the significance and benefits of these findings, current limitations in our methodology and how it can be improved

    GNSS transpolar earth reflectometry exploriNg system (G-TERN): mission concept

    Get PDF
    The global navigation satellite system (GNSS) Transpolar Earth Reflectometry exploriNg system (G-TERN) was proposed in response to ESA's Earth Explorer 9 revised call by a team of 33 multi-disciplinary scientists. The primary objective of the mission is to quantify at high spatio-temporal resolution crucial characteristics, processes and interactions between sea ice, and other Earth system components in order to advance the understanding and prediction of climate change and its impacts on the environment and society. The objective is articulated through three key questions. 1) In a rapidly changing Arctic regime and under the resilient Antarctic sea ice trend, how will highly dynamic forcings and couplings between the various components of the ocean, atmosphere, and cryosphere modify or influence the processes governing the characteristics of the sea ice cover (ice production, growth, deformation, and melt)? 2) What are the impacts of extreme events and feedback mechanisms on sea ice evolution? 3) What are the effects of the cryosphere behaviors, either rapidly changing or resiliently stable, on the global oceanic and atmospheric circulation and mid-latitude extreme events? To contribute answering these questions, G-TERN will measure key parameters of the sea ice, the oceans, and the atmosphere with frequent and dense coverage over polar areas, becoming a “dynamic mapper”of the ice conditions, the ice production, and the loss in multiple time and space scales, and surrounding environment. Over polar areas, the G-TERN will measure sea ice surface elevation (<;10 cm precision), roughness, and polarimetry aspects at 30-km resolution and 3-days full coverage. G-TERN will implement the interferometric GNSS reflectometry concept, from a single satellite in near-polar orbit with capability for 12 simultaneous observations. Unlike currently orbiting GNSS reflectometry missions, the G-TERN uses the full GNSS available bandwidth to improve its ranging measurements. The lifetime would be 2025-2030 or optimally 2025-2035, covering key stages of the transition toward a nearly ice-free Arctic Ocean in summer. This paper describes the mission objectives, it reviews its measurement techniques, summarizes the suggested implementation, and finally, it estimates the expected performance.Peer ReviewedPostprint (published version

    NASA geology program bibliography

    Get PDF
    A bibliography of scientific papers, articles, and books based on research supported by the NASA Geology Program is given. The citations cover the period 1980 to 1990. An author index is included

    Publications of the Jet Propulsion Laboratory, 1984

    Get PDF
    The Jet Propulsion Laboratory (JPL) bibliography 39-26 describes and indexes by primary author the externally distributed technical reporting, released during calendar year 1984, that resulted from scientific and engineering work performed, or managed, by the Jet Propulsion Laboratory. Three classes of publications are included: (1) JPL Publications (82-, 83-, 84-series, etc.), in which the information is complete for a specific accomplishment; (2) articles from the quarterly Telecommunications and Data Acquisition (TDA) Program Report (42-series); and (3) articles published in the open literature

    Prospective for urban informatics

    Get PDF
    The specialization of different urban sectors, theories, and technologies and their confluence in city development have led to a greatly accelerated growth in urban informatics, the transdisciplinary field for understanding and developing the city through new information technologies. While this young and highly promising field has attracted multiple reviews of its advances and outlook for its future, it would be instructive to probe further into the research initiatives of this rapidly evolving field, to provide reference to the development of not only urban informatics, but moreover the future of cities as a whole. This article thus presents a collection of research initiatives for urban informatics, based on the reviews of the state of the art in this field. The initiatives cover three levels, namely the future of urban science; core enabling technologies including geospatial artificial intelligence, high-definition mapping, quantum computing, artificial intelligence and the internet of things (AIoT), digital twins, explainable artificial intelligence, distributed machine learning, privacy-preserving deep learning, and applications in urban design and planning, transport, location-based services, and the metaverse, together with a discussion of algorithmic and data-driven approaches. The article concludes with hopes for the future development of urban informatics and focusses on the balance between our ever-increasing reliance on technology and important societal concerns

    Problems in merging Earth sensing satellite data sets

    Get PDF
    Satellite remote sensing systems provide a tremendous source of data flow to the Earth science community. These systems provide scientists with data of types and on a scale previously unattainable. Looking forward to the capabilities of Space Station and the Earth Observing System (EOS), the full realization of the potential of satellite remote sensing will be handicapped by inadequate information systems. There is a growing emphasis in Earth science research to ask questions which are multidisciplinary in nature and global in scale. Many of these research projects emphasize the interactions of the land surface, the atmosphere, and the oceans through various physical mechanisms. Conducting this research requires large and complex data sets and teams of multidisciplinary scientists, often working at remote locations. A review of the problems of merging these large volumes of data into spatially referenced and manageable data sets is presented

    Generating nonlinear FM chirp waveforms for radar.

    Full text link
    corecore