103,585 research outputs found

    A process-based model of conifer forest structure and function with special emphasis on leaf lifespan

    Get PDF
    We describe the University of Sheffield Conifer Model (USCM), a process-based approach for simulating conifer forest carbon, nitrogen, and water fluxes by up-scaling widely applicable relationships between leaf lifespan and function. The USCM is designed to predict and analyze the biogeochemistry and biophysics of conifer forests that dominated the ice-free high-latitude regions under the high pCO2 “greenhouse” world 290–50 Myr ago. It will be of use in future research investigating controls on the contrasting distribution of ancient evergreen and deciduous forests between hemispheres, and their differential feedbacks on polar climate through the exchange of energy and materials with the atmosphere. Emphasis is placed on leaf lifespan because this trait can be determined from the anatomical characteristics of fossil conifer woods and influences a range of ecosystem processes. Extensive testing of simulated net primary production and partitioning, leaf area index, evapotranspiration, nitrogen uptake, and land surface energy partitioning showed close agreement with observations from sites across a wide climatic gradient. This indicates the generic utility of our model, and adequate representation of the key processes involved in forest function using only information on leaf lifespan, climate, and soils

    Effects of management practices on water yield in small headwater catchments at Cordillera de los Andes in southern Chile

    Get PDF
    In several parts of the world, drinking water is obtained from springs in natural and managed mountainous forests. Since forests regulate quality as well as quantity of water, the effects of forest-management activities on water yield are an important subject of study. The objective of this study was to evaluate the effects of forest management on water yield in managed and unmanaged temperate native rainforests in the Andean range of southern Chile. The study area is located in San Pablo, a forest reserve of 2,184 ha located at the Andean range of southern Chile (39º 35’ S, 72º 07’ W, 600-925 m a.s.l.). From April 2003 to October 2008, seven experimental small catchments were monitored for rainfall, throughfall, stemflow, soil water infiltration, soil water percolation and runoff. In 2002, one catchment with a secondary deciduous forest was managed, through thinning, causing a reduction in basal area by 35% whereas the other one remained unthinned as control. Both watersheds are adjacent and are located at 600 – 720 m of elevation on deep loam textured volcanic soils (100 - 120 cm). In November 2006, a watershed covered with evergreen old-growth forests was thinned extracting 40% of the total basal area whereas another adjacent catchment remained unthinned as control. Both watersheds are located at 725 – 910 m a.s.l. and have the same aspects. The effects of management of deciduous secondary forests showed that for the period April 2003-March 2007, the mean value of the increase in total annual streamflow was 12.7%, ranging from 10.9% to 14.6%. Thinning of the evergreen old-growth forest increased the streamflow for the period November 2006-October 2008 with 6.1%, ranging from 4.4% to 7.8%, with greater differences during summertime (15.7 to 206%)

    Reversed impacts by specialist parasitoids and generalist predators may explain a phase lag in moth cycles : a novel hypothesis and preliminary field tests

    Get PDF
    Among cyclic populations of herbivores, inter-specific temporal synchrony has been attributed to both climatic factors and trophic interactions. In northern Europe, winter and autumnal moths undergo regular 9–11 year population cycles. The winter moth cycle has typically been phase-locked with that of the autumnal moth, but with a 1–3- year phase lag. We examined potential effects of natural enemies on this phase lag using field experiments and observational data. We found that larval parasitism was significantly higher in autumnal than in winter moths. Conversely, pupal predation by generalist invertebrates was clearly greater in winter than in autumnal moths. The difference in parasitism rates may contribute to the earlier collapse of the autumnal moth cycle. In addition, the phase lag may be strengthened by higher pupal mortality in winter moths in the early increase phase of the cycles. As a consequence, we put forward a hypothesis on reversed effects of natural enemies, providing a potential explanation for phase-lagged population cycles of these moth species
    • …
    corecore