1,038 research outputs found

    Biomass estimation in Indonesian tropical forests using active remote sensing systems

    Get PDF

    An evaluation of SMOS L-band vegetation optical depth (L-VOD) data sets:high sensitivity of L-VOD to above-ground biomass in Africa

    Get PDF
    The vegetation optical depth (VOD) measured at microwave frequencies is related to the vegetation water content and provides information complementary to visible/infrared vegetation indices. This study is devoted to the characterization of a new VOD data set obtained from SMOS (Soil Moisture and Ocean Salinity) satellite observations at L-band (1.4 GHz). Three different SMOS L-band VOD (LVOD) data sets (SMOS level 2, level 3 and SMOS-IC) were compared with data sets on tree height, visible/infrared indexes (NDVI, EVI), mean annual precipitation and above-ground biomass (AGB) for the African continent. For all relationships, SMOS-IC showed the lowest dispersion and highest correlation. Overall, we found a strong (R > 0.85) correlation with no clear sign of saturation between L-VOD and four AGB data sets. The relationships between L-VOD and the AGB data sets were linear per land cover class but with a changing slope depending on the class type, which makes it a global non-linear relationship. In contrast, the relationship linking L-VOD to tree height (R = 0.87) was close to linear. For vegetation classes other than evergreen broadleaf forest, the annual mean of L-VOD spans a range from 0 to 0.7 and it is linearly correlated with the average annual precipitation. SMOS L-VOD showed higher sensitivity to AGB compared to NDVI and K/X/C-VOD (VOD measured at 19, 10.7 and 6.9 GHz). The results showed that, although the spatial resolution of L-VOD is coarse (similar to 40 km), the high temporal frequency and sensitivity to AGB makes SMOS L-VOD a very promising indicator for large-scale monitoring of the vegetation status, in particular biomass

    Development of a Dynamic Web Mapping Service for Vegetation Productivity Using Earth Observation and in situ Sensors in a Sensor Web Based Approach

    Get PDF
    This paper describes the development of a sensor web based approach which combines earth observation and in situ sensor data to derive typical information offered by a dynamic web mapping service (WMS). A prototype has been developed which provides daily maps of vegetation productivity for the Netherlands with a spatial resolution of 250 m. Daily available MODIS surface reflectance products and meteorological parameters obtained through a Sensor Observation Service (SOS) were used as input for a vegetation productivity model. This paper presents the vegetation productivity model, the sensor data sources and the implementation of the automated processing facility. Finally, an evaluation is made of the opportunities and limitations of sensor web based approaches for the development of web services which combine both satellite and in situ sensor sources

    New Methods for Measurements of Photosynthesis from Space

    Get PDF
    Our ability to close the Earth's carbon budget and predict feedbacks in a warming climate depends critically on knowing where, when, and how carbon dioxide (CO2) is exchanged between the land and atmosphere. In particular, determining the rate of carbon fixation by the Earth's biosphere (commonly referred to as gross primary productivity, or GPP) and the dependence of this productivity on climate is a central goal. Historically, GPP has been inferred from spectral imagery of the land and ocean. Assessment of GPP from the color of the land and ocean requires, however, additional knowledge of the types of plants in the scene, their regulatory mechanisms, and climate variables such as soil moisture—just the independent variables of interest! Sunlight absorbed by chlorophyll in photosynthetic organisms is mostly used to drive photosynthesis, but some can also be dissipated as heat or re‐radiated at longer wavelengths (660–800 nm). This near‐infrared light re‐emitted from illuminated plants is termed solarinduced fluorescence (SIF), and it has been found to strongly correlate with GPP. To advance our understanding of SIF and its relation to GPP and environmental stress at the planetary scale, the Keck Institute for Space Studies (KISS) convened a workshop—held in Pasadena, California, in August 2012—to focus on a newly developed capacity to monitor chlorophyll fluorescence from terrestrial vegetation by satellite. This revolutionary approach for retrieving global observations of SIF promises to provide direct and spatially resolved information on GPP, an ideal bottom‐up complement to the atmospheric net CO2 exchange inversions. Workshop participants leveraged our efforts on previous studies and workshops related to the European Space Agency’s FLuorescence EXplorer (FLEX) mission concept, which had already targeted SIF for a possible satellite mission and had developed a vibrant research community with many important publications. These studies, mostly focused on landscape, canopy, and leaf‐level interpretation, provided the ground‐work for the workshop, which focused on the global carbon cycle and synergies with atmospheric net flux inversions. Workshop participants included key members of several communities: plant physiologists with experience using active fluorescence methods to quantify photosynthesis; ecologists and radiative transfer experts who are studying the challenge of scaling from the leaf to regional scales; atmospheric scientists with experience retrieving photometric information from space‐borne spectrometers; and carbon cycle experts who are integrating new observations into models that describe the exchange of carbon between the atmosphere, land and ocean. Together, the participants examined the link between “passive” fluorescence observed from orbiting spacecraft and the underlying photochemistry, plant physiology and biogeochemistry of the land and ocean. This report details the opportunity for forging a deep connection between scientists doing basic research in photosynthetic mechanisms and the more applied community doing research on the Earth System. Too often these connections have gotten lost in empiricism associated with the coarse scale of global models. Chlorophyll fluorescence has been a major tool for basic research in photosynthesis for nearly a century. SIF observations from space, although sensing a large footprint, probe molecular events occurring in the leaves below. This offers an opportunity for direct mechanistic insight that is unparalleled for studies of biology in the Earth System. A major focus of the workshop was to review the basic mechanisms that underlie this phenomenon, and to explore modeling tools that have been developed to link the biophysical and biochemical knowledge of photosynthesis with the observable—in this case, the radiance of SIF—seen by the satellite. Discussions led to the identification of areas where knowledge is still lacking. For example, the inability to do controlled illumination observations from space limits the ability to fully constrain the variables that link fluorescence and photosynthesis. Another focus of the workshop explored a “top‐down” view of the SIF signal from space. Early studies clearly identified a strong correlation between the strength of this signal and our best estimate of the rate of photosynthesis (GPP) over the globe. New studies show that this observation provides improvements over conventional reflectance‐based remote sensing in detecting seasonal and environmental (particularly drought related) modulation of photosynthesis. Apparently SIF responds much more quickly and with greater dynamic range than typical greenness indices when GPP is perturbed. However, discussions at the workshop also identified areas where top‐down analysis seemed to be “out in front” of mechanistic studies. For example, changes in SIF based on changes in canopy light interception and the light use efficiency of the canopy, both of which occur in response to drought, are assumed equivalent in the top‐down analysis, but the mechanistic justification for this is still lacking from the bottom‐up side. Workshop participants considered implications of these mechanistic and empirical insights for large‐scale models of the carbon cycle and biogeochemistry, and also made progress toward incorporating SIF as a simulated output in land surface models used in global and regional‐scale analysis of the carbon cycle. Comparison of remotely sensed SIF with modelsimulated SIF may open new possibilities for model evaluation and data assimilation, perhaps leading to better modeling tools for analysis of the other retrieval from GOSAT satellite, atmospheric CO2 concentration. Participants also identified another application for SIF: a linkage to the physical climate system arising from the ability to better identify regional development of plant water stress. Decreases in transpiration over large areas of a continent are implicated in the development and “locking‐in” of drought conditions. These discussions also identified areas where current land surface models need to be improved in order to enable this research. Specifically, the radiation transport treatments need dramatic overhauls to correctly simulate SIF. Finally, workshop participants explored approaches for retrieval of SIF from satellite and ground‐based sensors. The difficulty of resolving SIF from the overwhelming flux of reflected sunlight in the spectral region where fluorescence occurs was once a major impediment to making this measurement. Placement of very high spectral resolution spectrometers on GOSAT (and other greenhouse gas–sensing satellites) has enabled retrievals based on infilling of solar Fraunhofer lines, enabling accurate fluorescence measurements even in the presence of moderately thick clouds. Perhaps the most interesting challenge here is that there is no readily portable ground‐based instrumentation that even approaches the capability of GOSAT and other planned greenhouse gas satellites. This strongly limits scientists’ ability to conduct ground‐based studies to characterize the footprint of the GOSAT measurement and to conduct studies of radiation transport needed to interpret SIF measurement. The workshop results represent a snapshot of the state of knowledge in this area. New research activities have sprung from the deliberations during the workshop, with publications to follow. The introduction of this new measurement technology to a wide slice of the community of Earth System Scientists will help them understand how this new technology could help solve problems in their research, address concerns about the interpretation, identify future research needs, and elicit support of the wider community for research needed to support this observation. Somewhat analogous to the original discovery that vegetation indices could be derived from satellite measurements originally intended to detect clouds, the GOSAT observations are a rare case in which a (fortuitous) global satellite dataset becomes available before the research community had a consolidated understanding on how (beyond an empirical correlation) it could be applied to understanding the underlying processes. Vegetation indices have since changed the way we see the global biosphere, and the workshop participants envision that fluorescence can perform the next indispensable step by complementing these measurements with independent estimates that are more indicative of actual (as opposed to potential) photosynthesis. Apart from the potential FLEX mission, no dedicated satellite missions are currently planned. OCO‐2 and ‐3 will provide much more data than GOSAT, but will still not allow for regional studies due to the lack of mapping capabilities. Geostationary observations may even prove most useful, as they could track fluorescence over the course of the day and clearly identify stress‐related down‐regulation of photosynthesis. Retrieval of fluorescence on the global scale should be recognized as a valuable tool; it can bring the same quantum leap in our understanding of the global carbon cycle as vegetation indices once did
    • 

    corecore