120 research outputs found

    Forest Aboveground Biomass Estimation Using Multi-Source Remote Sensing Data in Temperate Forests

    Get PDF
    Forests are a crucial part of global ecosystems. Accurately estimating aboveground biomass (AGB) is important in many applications including monitoring carbon stocks, investigating forest degradation, and designing sustainable forest management strategies. Remote sensing techniques have proved to be a cost-effective way to estimate forest AGB with timely and repeated observations. This dissertation investigated the use of multiple remotely sensed datasets for forest AGB estimation in temperate forests. We compared the performance of Landsat and lidar data—individually and fused—for estimating AGB using multiple regression models (MLR), Random Forest (RF) and Geographically Weight Regression (GWR). Our approach showed MLR performed similarly to GWR and both were better than RF. Integration of lidar and Landsat inputs outperformed either data source alone. However, although lidar provides valuable three-dimensional forest structure information, acquiring comprehensive lidar coverage is often cost prohibitive. Thus we developed a lidar sampling framework to support AGB estimation from Landsat images. We compared two sampling strategies—systematic and classification-based—and found that the systematic sampling selection method was highly dependent on site conditions and had higher model variability. The classification-based lidar sampling strategy was easy to apply and provides a framework that is readily transferable to new study sites. The performance of Sentinel-2 and Landsat 8 data for quantifying AGB in a temperate forest using RF regression was also tested. We modeled AGB using three datasets: Sentinel-2, Landsat 8, and a pseudo dataset that retained the spatial resolution of Sentinel-2 but only the spectral bands that matched those on Landsat 8. We found that while RF model parameters impact model outcomes, it is more important to focus attention on variable selection. Our results showed that the incorporation of red-edge information increased AGB estimation accuracy by approximately 6%. The additional spatial resolution improved accuracy by approximately 3%. The variable importance ranks in the RF regression model showed that in addition to the red- edge bands, the shortwave infrared bands were important either individually (in the Sentinel-2 model) or in band indices. With the growing availability of remote sensing datasets, developing tools to appropriately and efficiently apply remote sensing data is increasingly important

    List of scientific papers in 2018 published by field science group in Graduate School of Agricultural Science, Tohoku University

    Get PDF

    List of scientific papers in 2019 published by field science group in Graduate School of Agricultural Science, Tohoku University

    Get PDF

    Earth resources: A continuing bibliography with indexes (issue 47)

    Get PDF
    This bibliography lists 524 reports, articles and other documents introduced into the NASA scientific and technical information system between July 1 and September 30, 1985. Emphasis is placed on the use of remote sensing and geophysical instrumentation in spacecraft and aircraft to survey and inventory natural resources and urban areas. Subject matter is grouped according to agriculture and forestry, environmental changes and cultural resources, geodesy and cartography, geology and mineral resources, hydrology and water management, data processing and distribution systems, instrumentation and sensors, and economical analysis

    ALOS-2/PALSAR-2 Calibration, Validation, Science and Applications

    Get PDF
    Twelve edited original papers on the latest and state-of-art results of topics ranging from calibration, validation, and science to a wide range of applications using ALOS-2/PALSAR-2. We hope you will find them useful for your future research

    Carbon stock prediction in managed forest ecosystems using Bayesian and frequentist geostatistical techniques and new generation remote sensing metrics

    Get PDF
    The study compares the performance of a hierarchical Bayesian geostatistical methodology with a frequentist geostatistical approach, specifically, Kriging with External Drift (KED), for predicting C stock using prediction aides from the Landsat-8 and Sentinel-2 multispectral remote sensing platforms. The frequentist geostatistical approach’s reliance on the long-run frequency of repeated experiments for constructing confidence intervals is not always practical or feasible, as practitioners typically have access to a single dataset due to cost constraints on surveys and sampling. We evaluated two approaches for C stock prediction using two new generation multispectral remote sensing datasets because of the inherent uncertainty characterizing spatial prediction problems in the unsampled locations, as well as differences in how the Bayesian and frequentist geostatistical paradigms handle uncertainty

    Examination of the Quantitative Relationship between Vegetation Canopy Height and LAI

    Get PDF
    Accurate estimation of vegetation biophysical variables such as the vegetation canopy height (H) is of great importance to the applications of the land surface models. It is difficult to obtain the data of H at the regional scale or larger scale, but the remote sensing provides the most useful and most effective method. The leaf area index (LAI) is closely related to the H, and we analyzed its relationship with the correlation analysis based on the dataset at 86 site-years of field measurements from sites worldwide in this study. The result indicates that there is significant positive exponent correlation between these two parameters and the change of LAI would exert great impacts on H. The higher the LAI is, the higher the H is, and vice versa. Besides, the coefficients of different land cover types are very heterogeneous, and LAI of the needleleaf forest shows strong correlation with H, while that of the cropland shows weak correlation with H. The results may provide certain reference information for the extraction of the data of H at the regional scale with the remote sensing data

    Woody aboveground biomass mapping of the brazilian savanna with a multi-sensor and machine learning approach

    Get PDF
    The tropical savanna in Brazil known as the Cerrado covers circa 23% of the Brazilian territory, but only 3% of this area is protected. High rates of deforestation and degradation in the woodland and forest areas have made the Cerrado the second-largest source of carbon emissions in Brazil. However, data on these emissions are highly uncertain because of the spatial and temporal variability of the aboveground biomass (AGB) in this biome. Remote-sensing data combined with local vegetation inventories provide the means to quantify the AGB at large scales. Here, we quantify the spatial distribution of woody AGB in the Rio Vermelho watershed, located in the centre of the Cerrado, at a high spatial resolution of 30 metres, with a random forest (RF) machine-learning approach. We produced the first high-resolution map of the AGB for a region in the Brazilian Cerrado using a combination of vegetation inventory plots, airborne light detection and ranging (LiDAR) data, and multispectral and radar satellite images (Landsat 8 and ALOS-2/PALSAR-2). A combination of random forest (RF) models and jackknife analyses enabled us to select the best remote-sensing variables to quantify the AGB on a large scale. Overall, the relationship between the ground data from vegetation inventories and remote-sensing variables was strong (R2 = 0.89), with a root-mean-square error (RMSE) of 7.58 Mg ha−1 and a bias of 0.43 Mg ha−1

    Hierarchical Bayesian geostatistics for C stock prediction in disturbed plantation forest in Zimbabwe

    Get PDF
    We develop and present a novel Bayesian hierarchical geostatistical model for the prediction of plantation forest carbon stock (C stock) in the eastern highlands of Zimbabwe using multispectral Landsat-8 and Sentinel-2 remotely sensed data. Specifically, we adopt a Bayesian hierarchical methodology encompassing a model based inferential framework making use of efficient Markov Chain Monte Carlo (MCMC) techniques for assessing model input parameters. Our proposed hierarchical modelling framework evaluates the influence of two but related covariate information sources in C stock prediction in order to build sustainable capacity on carbon reporting and monitoring. The perceived improvements in the spectral and spatial properties of Landsat-8 and Sentinel-2 data and their potential to predict C stock with shorter uncertainty bounds is tested in the developed hierarchical Bayesian model

    Remote Sensing of Savannas and Woodlands

    Get PDF
    Savannas and woodlands are one of the most challenging targets for remote sensing. This book provides a current snapshot of the geographical focus and application of the latest sensors and sensor combinations in savannas and woodlands. It includes feature articles on terrestrial laser scanning and on the application of remote sensing to characterization of vegetation dynamics in the Mato Grosso, Cerrado and Caatinga of Brazil. It also contains studies focussed on savannas in Europe, North America, Africa and Australia. It should be important reading for environmental practitioners and scientists globally who are concerned with the sustainability of the global savanna and woodland biome
    corecore