452 research outputs found

    Evaluation of Approaches for Mapping Tidal Wetlands of the Chesapeake and Delaware Bays

    Full text link
    The spatial extent and vegetation characteristics of tidal wetlands and their change are among the biggest unknowns and largest sources of uncertainty in modeling ecosystem processes and services at the land-ocean interface. Using a combination of moderate-high spatial resolution

    The application of Earth Observation for mapping soil saturation and the extent and distribution of artificial drainage on Irish farms

    Get PDF
    Artificial drainage is required to make wet soils productive for farming. However, drainage may have unintended environmental consequences, for example, through increased nutrient loss to surface waters or increased flood risk. It can also have implications for greenhouse gas emissions. Accurate data on soil drainage properties could help mitigate the impact of these consequences. Unfortunately, few countries maintain detailed inventories of artificially-drained areas because of the costs involved in compiling such data. This is further confounded by often inadequate knowledge of drain location and function at farm level. Increasingly, Earth Observation (EO) data is being used map drained areas and detect buried drains. The current study is the first harmonised effort to map the location and extent of artificially-drained soils in Ireland using a suite of EO data and geocomputational techniques. To map artificially-drained areas, support vector machine (SVM) and random forest (RF) machine learning image classifications were implemented using Landsat 8 multispectral imagery and topographical data. The RF classifier achieved overall accuracy of 91% in a binary segmentation of artifically-drained and poorly-drained classes. Compared with an existing soil drainage map, the RF model indicated that ~44% of soils in the study area could be classed as “drained”. As well as spatial differences, temporal changes in drainage status where detected within a 3 hectare field, where drains installed in 2014 had an effect on grass production. Using the RF model, the area of this field identified as “drained” increased from a low of 25% in 2011 to 68% in 2016. Landsat 8 vegetation indices were also successfully applied to monitoring the recovery of pasture following extreme saturation (flooding). In conjunction with this, additional EO techniques using unmanned aerial systems (UAS) were tested to map overland flow and detect buried drains. A performance assessment of UAS structure-from-motion (SfM) photogrammetry and aerial LiDAR was undertaken for modelling surface runoff (and associated nutrient loss). Overland flow models were created using the SIMWE model in GRASS GIS. Results indicated no statistical difference between models at 1, 2 & 5 m spatial resolution (p< 0.0001). Grass height was identified as an important source of error. Thermal imagery from a UAS was used to identify the locations of artifically drained areas. Using morning and afternoon images to map thermal extrema, significant differences in the rate of heating were identified between drained and undrained locations. Locations of tiled and piped drains were identified with 59 and 64% accuracy within the study area. Together these methods could enable better management of field drainage on farms, identifying drained areas, as well as the need for maintenance or replacement. They can also assess whether treatments have worked as expected or whether the underlying saturation problems continues. Through the methods developed and described herein, better characterisation of drainage status at field level may be achievable

    Comparison of layer-stacking and Dempster-Shafer theory-based methods using Sentinel-1 and Sentinel-2 data fusion in urban land cover mapping

    Get PDF
    Data fusion has shown potential to improve the accuracy of land cover mapping, and selection of the optimal fusion technique remains a challenge. This study investigated the performance of fusing Sentinel-1 (S-1) and Sentinel-2 (S-2) data, using layer-stacking method at the pixel level and Dempster-Shafer (D-S) theory-based approach at the decision level, for mapping six land cover classes in Thu Dau Mot City, Vietnam. At the pixel level, S-1 and S-2 bands and their extracted textures and indices were stacked into the different single-sensor and multi-sensor datasets (i.e. fused datasets). The datasets were categorized into two groups. One group included the datasets containing only spectral and backscattering bands, and the other group included the datasets consisting of these bands and their extracted features. The random forest (RF) classifier was then applied to the datasets within each group. At the decision level, the RF classification outputs of the single-sensor datasets within each group were fused together based on D-S theory. Finally, the accuracy of the mapping results at both levels within each group was compared. The results showed that fusion at the decision level provided the best mapping accuracy compared to the results from other products within each group. The highest overall accuracy (OA) and Kappa coefficient of the map using D-S theory were 92.67% and 0.91, respectively. The decision-level fusion helped increase the OA of the map by 0.75% to 2.07% compared to that of corresponding S-2 products in the groups. Meanwhile, the data fusion at the pixel level delivered the mapping results, which yielded an OA of 4.88% to 6.58% lower than that of corresponding S-2 products in the groups

    ELULC-10, a 10 m European land use and land cover map using Sentinel and landsat data in Google Earth Engine

    Get PDF
    Land Use/Land Cover (LULC) maps can be effectively produced by cost-effective and frequent satellite observations. Powerful cloud computing platforms are emerging as a growing trend in the high utilization of freely accessible remotely sensed data for LULC mapping over large-scale regions using big geodata. This study proposes a workflow to generate a 10 m LULC map of Europe with nine classes, ELULC-10, using European Sentinel-1/-2 and Landsat-8 images, as well as the LUCAS reference samples. More than 200 K and 300 K of in situ surveys and images, respectively, were employed as inputs in the Google Earth Engine (GEE) cloud computing platform to perform classification by an object-based segmentation algorithm and an Artificial Neural Network (ANN). A novel ANN-based data preparation was also presented to remove noisy reference samples from the LUCAS dataset. Additionally, the map was improved using several rule-based post-processing steps. The overall accuracy and kappa coefficient of 2021 ELULC-10 were 95.38% and 0.94, respectively. A detailed report of the classification accuracies was also provided, demonstrating an accurate classification of different classes, such as Woodland and Cropland. Furthermore, rule-based post processing improved LULC class identifications when compared with current studies. The workflow could also supply seasonal, yearly, and change maps considering the proposed integration of complex machine learning algorithms and large satellite and survey data.Peer ReviewedPostprint (published version

    The agricultural impact of the 2015–2016 floods in Ireland as mapped through Sentinel 1 satellite imagery

    Get PDF
    peer-reviewedIrish Journal of Agricultural and Food Research | Volume 58: Issue 1 The agricultural impact of the 2015–2016 floods in Ireland as mapped through Sentinel 1 satellite imagery R. O’Haraemail , S. Green and T. McCarthy DOI: https://doi.org/10.2478/ijafr-2019-0006 | Published online: 11 Oct 2019 PDF Abstract Article PDF References Recommendations Abstract The capability of Sentinel 1 C-band (5 cm wavelength) synthetic aperture radio detection and ranging (RADAR) (abbreviated as SAR) for flood mapping is demonstrated, and this approach is used to map the extent of the extensive floods that occurred throughout the Republic of Ireland in the winter of 2015–2016. Thirty-three Sentinel 1 images were used to map the area and duration of floods over a 6-mo period from November 2015 to April 2016. Flood maps for 11 separate dates charted the development and persistence of floods nationally. The maximum flood extent during this period was estimated to be ~24,356 ha. The depth of rainfall influenced the magnitude of flood in the preceding 5 d and over more extended periods to a lesser degree. Reduced photosynthetic activity on farms affected by flooding was observed in Landsat 8 vegetation index difference images compared to the previous spring. The accuracy of the flood map was assessed against reports of flooding from affected farms, as well as other satellite-derived maps from Copernicus Emergency Management Service and Sentinel 2. Monte Carlo simulated elevation data (20 m resolution, 2.5 m root mean square error [RMSE]) were used to estimate the flood’s depth and volume. Although the modelled flood height showed a strong correlation with the measured river heights, differences of several metres were observed. Future mapping strategies are discussed, which include high–temporal-resolution soil moisture data, as part of an integrated multisensor approach to flood response over a range of spatial scales

    Local-scale mapping of tree species in a lower mountain area using Sentinel-1 and -2 multitemporal images, vegetation indices, and topographic information

    Get PDF
    IntroductionMapping tree species is an important activity that provides the information necessary for sustainable forest management. Remote sensing is a effective tool that offers data at different spatial and spectral resolutions over large areas. Free and open acces Sentinel satellite imagery and Google Earth Engine, which is a powerful cloud computing platform, can be used together to map tree species.MethodsIn this study we mapped tree species at a local scale using recent Sentinel-1 (S-1) and Sentinel-2 (S-2) time-series imagery, various vegetation indices (Normalized Difference Vegetation Index - NDVI, Enhanced Vegetation Index - EVI, Green Leaf Index - GLI, and Green Normalized Difference Vegetation Index - GNDVI) and topographic features (elevation, aspect and slope). Five sets of data were used, in different combinations, together with the Random Forest classifier in order to determine seven tree species (spruce, beech, larch, fir, pine, mixed, and other broadleaves [BLs]) in the studied area.Results and discussionDataset 1 was a combination of S-2 images (bands 2, 3, 4, 5, 6, 7, 8, 8a, 11 and 12), for which an overall accuracy of 76.74% was obtained. Dataset 2 comprised S-2 images and vegetation indices, leading to an overall accuracy of 78.24%. Dataset 3 included S-2 images and topographic features, which lead to an overall accuracy of 89.51%. Dataset 4 included S-2 images, vegetation indices, and topographic features, that have determined an overall accuracy of 89.36%. Dataset 5 was composed of S-2 images, S-1 images (VV and VH polarization), vegetation indices, and topographic features that lead to an overall accuracy of 89.68%. Among the five sets of data, Dataset 3 produced the most significant increase in accuracy, of 12.77%, compared to Dataset 1. Including the vegetation indices with the S-2 images (Dataset 2) gave an accuracy increase of only 1.50%. By combining the S-1 and S-2 images, vegetation indices and topographic features (Dataset 5) there was an accuracy increase of only 0.17%, compared with the S-2 images plus topographic features combination (Dataset 3). However, the input brought by the S-1 images was apparent in the increase in classification accuracy for the mixed and other BL species that were mostly found in hilly locations. Our findings confirm the potential of S-2 images, used together with other variables, for classifying tree species at the local scale

    Green Infrastructure Mapping in Urban Areas Using Sentinel-1 Imagery

    Get PDF
    High temporal resolution of synthetic aperture radar (SAR) imagery (e.g., Sentinel-1 (S1) imagery) creates new possibilities for monitoring green vegetation in urban areas and generating land-cover classification (LCC) maps. This research evaluates how different pre-processing steps of SAR imagery affect classification accuracy. Machine learning (ML) methods were applied in three different study areas: random forest (RF), support vector machine (SVM), and extreme gradient boosting (XGB). Since the presence of the speckle noise in radar imagery is inevitable, different adaptive filters were examined. Using the backscattering values of the S1 imagery, the SVM classifier achieved a mean overall accuracy (OA) of 63.14%, and a Kappa coefficient (Kappa) of 0.50. Using the SVM classifier with a Lee filter with a window size of 5×5 (Lee5) for speckle reduction, mean values of 73.86% and 0.64 for OA and Kappa were achieved, respectively. An additional increase in the LCC was obtained with texture features calculated from a grey-level co-occurrence matrix (GLCM). The highest classification accuracy obtained for the extracted GLCM texture features using the SVM classifier, and Lee5 filter was 78.32% and 0.69 for the mean OA and Kappa values, respectively. This study improved LCC with an evaluation of various radiometric and texture features and confirmed the ability to apply an SVM classifier. For the supervised classification, the SVM method outperformed the RF and XGB methods, although the highest computational time was needed for the SVM, whereas XGB performed the fastest. These results suggest pre-processing steps of the SAR imagery for green infrastructure mapping in urban areas. Future research should address the use of multitemporal SAR data along with the pre-processing steps and ML algorithms described in this research

    Joint use of Sentinel-1 and Sentinel-2 for land cover classification : a machine learning approach

    Get PDF
    Reliable information on land cover is required to assist and help in the decision-making process needed to face the environmental challenges society has to deal with due to climate change and other driving forces. Different methods can be used to gather this information but satellite earth observation techniques offer a suitable approach based on the coverage and type of data that are provided. Few years ago, the European Union (EU) started an ambitious program, Copernicus, that includes the launch of a new family of earth observation satellites known as Sentinel. Each Sentinel mission is based on a constellation of two satellites to fulfill specific requirements of coverage and revisit time. Among them are the Sentinel-1 and Sentinel-2 satellites. Sentinel-1 carries a Synthetic Aperture RADAR (SAR) that operates on the C-band. This platform offers SAR data day-and-night and in all-weather conditions. Sentinel-2 is a multispectral high-resolution imaging mission. The sensor has 13 spectral channels, incorporating four visible and near-infrared bands at 10 m resolution, six red-edge/shortwave-infrared bands at 20 m and three atmospheric correction bands at 60 m. The main objective of this study has been to investigate the classification accuracies of specific land covers obtained after a Random Forest classification of multi-temporal Sentinel data over an agricultural area. Four scenarios have been tested for the classification: i) Sentinel-1, ii) Sentinel-2, iii) Sentinel-2 and vegetation indices, iv) Sentinel-1, Sentinel-2, and vegetation indices. The classifications have been performed using a pixel and polygon based approach. The results have shown that the best accuracies (0.98) are obtained when using and polygon based approach independently of the scenario that is selected. For the pixel based approach, the highest accuracy (0.84) is obtained when using Sentinel-1, Sentinel-2, and vegetation indices
    corecore