120 research outputs found

    Modeling of Subsurface Scattering from Ice Sheets for Pol-InSAR Applications

    Get PDF
    Remote sensing is a fundamental tool to measure the dynamics of ice sheets and provides valuable information for ice sheet projections under a changing climate. There is, however, the potential to further reduce the uncertainties in these projections by developing innovative remote sensing methods. One of these remote sensing techniques, the polarimetric synthetic aperture radar interferometry (Pol-InSAR), is known since decades to have the potential to assess the geophysical properties below the surface of ice sheets, because of the penetration of microwave signals into dry snow, firn, and ice. Despite this, only very few studies have addressed this topic and the development of robust Pol-InSAR applications is at an early stage. Two potential Pol-InSAR applications are identified as the motivation for this thesis. First, the estimation and compensation of the penetration bias in digital elevation models derived with SAR interferometry. This bias can lead to errors of several meters or even tens of meters in surface elevation measurements. Second, the estimation of geophysical properties of the subsurface of glaciers and ice sheets using Pol-InSAR techniques. There is indeed potential to derive information about melt-refreeze processes within the firn, which are related to density and affect the mass balance. Such Pol-InSAR applications can be a valuable information source with the potential for monthly ice sheet wide coverage and high spatial resolution provided by the next generation of SAR satellites. However, the required models to link the Pol-InSAR measurements to the subsurface properties are not yet established. The aim of this thesis is to improve the modeling of the vertical backscattering distribution in the subsurface of ice sheets and its effect on polarimetric interferometric SAR measurements at different frequencies. In order to achieve this, polarimetric interferometric multi-baseline SAR data at different frequencies and from two different test sites on the Greenland ice sheet are investigated. This thesis contributes with three concepts to a better understanding and to a more accurate modeling of the vertical backscattering distribution in the subsurface of ice sheets. First, the integration of scattering from distinct subsurface layers. These are formed by refrozen melt water in the upper percolation zone and cause an interesting coherence undulation pattern, which cannot be explained with previously existing models. This represents a first link between Pol-InSAR data and geophysical subsurface properties. The second step is the improved modeling of the general vertical backscattering distribution of the subsurface volume. The advantages of more flexible volume models are demonstrated, but interestingly, the simple modification of a previously existing model with a vertical shift parameter lead to the best agreement between model and data. The third contribution is the model based compensation of the penetration bias, which is experimentally validated. At the investigated test sites, it becomes evident that the model based estimates of the surface elevations are more accurate than the interferometric phase center locations, which are conventionally used to derive surface elevations of ice sheets. This thesis therefore improves the state of the art of subsurface scattering modeling for Pol-InSAR applications, demonstrates the model-based penetration bias compensation, and makes a further research step towards the retrieval of geophysical subsurface information with Pol-InSAR

    ALOS-2/PALSAR-2 Calibration, Validation, Science and Applications

    Get PDF
    Twelve edited original papers on the latest and state-of-art results of topics ranging from calibration, validation, and science to a wide range of applications using ALOS-2/PALSAR-2. We hope you will find them useful for your future research

    Polarimetric Synthetic Aperture Radar

    Get PDF
    This open access book focuses on the practical application of electromagnetic polarimetry principles in Earth remote sensing with an educational purpose. In the last decade, the operations from fully polarimetric synthetic aperture radar such as the Japanese ALOS/PalSAR, the Canadian Radarsat-2 and the German TerraSAR-X and their easy data access for scientific use have developed further the research and data applications at L,C and X band. As a consequence, the wider distribution of polarimetric data sets across the remote sensing community boosted activity and development in polarimetric SAR applications, also in view of future missions. Numerous experiments with real data from spaceborne platforms are shown, with the aim of giving an up-to-date and complete treatment of the unique benefits of fully polarimetric synthetic aperture radar data in five different domains: forest, agriculture, cryosphere, urban and oceans

    Study of the speckle noise effects over the eigen decomposition of polarimetric SAR data: a review

    No full text
    This paper is focused on considering the effects of speckle noise on the eigen decomposition of the co- herency matrix. Based on a perturbation analysis of the matrix, it is possible to obtain an analytical expression for the mean value of the eigenvalues and the eigenvectors, as well as for the Entropy, the Anisotroopy and the dif- ferent a angles. The analytical expressions are compared against simulated polarimetric SAR data, demonstrating the correctness of the different expressions.Peer ReviewedPostprint (published version

    Land cover and forest mapping in boreal zone using polarimetric and interferometric SAR data

    Get PDF
    Remote sensing offers a wide range of instruments suitable to meet the growing need for consistent, timely and cost-effective monitoring of land cover and forested areas. One of the most important instruments is synthetic aperture radar (SAR) technology, where transfer of advanced SAR imaging techniques from mostly experimental small test-area studies to satellites enables improvements in remote assessment of land cover on a global scale. Globally, forests are very suitable for remote sensing applications due to their large dimensions and relatively poor accessibility in distant areas. In this thesis, several methods were developed utilizing Earth observation data collected using such advanced SAR techniques, as well as their application potential was assessed. The focus was on use of SAR polarimetry and SAR interferometry to improve performance and robustness in assessment of land cover and forest properties in the boreal zone. Particular advances were achieved in land cover classification and estimating several key forest variables, such as forest stem volume and forest tree height. Important results reported in this thesis include: improved polarimetric SAR model-based decomposition approach suitable for use in boreal forest at L-band; development and demonstration of normalization method for fully polarimetric SAR mosaics, resulting in improved classification performance and suitable for wide-area mapping purposes; establishing new inversion procedure for robust forest stem volume retrieval from SAR data; developing semi-empirical method and demonstrating potential for soil type separation (mineral soil, peatland) under forested areas with L-band polarimetric SAR; developing and demonstrating methodology for simultaneous retrieval of forest tree height and radiowave attenuation in forest layer from inter-ferometric SAR data, resulting in improved accuracy and more stable estimation of forest tree height

    Polarimetric Synthetic Aperture Radar, Principles and Application

    Get PDF
    Demonstrates the benefits of the usage of fully polarimetric synthetic aperture radar data in applications of Earth remote sensing, with educational and development purposes. Includes numerous up-to-date examples with real data from spaceborne platforms and possibility to use a software to support lecture practicals. Reviews theoretical principles in an intuitive way for each application topic. Covers in depth five application domains (forests, agriculture, cryosphere, urban, and oceans), with reference also to hazard monitorin

    Multi-source Remote Sensing for Forest Characterization and Monitoring

    Full text link
    As a dominant terrestrial ecosystem of the Earth, forest environments play profound roles in ecology, biodiversity, resource utilization, and management, which highlights the significance of forest characterization and monitoring. Some forest parameters can help track climate change and quantify the global carbon cycle and therefore attract growing attention from various research communities. Compared with traditional in-situ methods with expensive and time-consuming field works involved, airborne and spaceborne remote sensors collect cost-efficient and consistent observations at global or regional scales and have been proven to be an effective way for forest monitoring. With the looming paradigm shift toward data-intensive science and the development of remote sensors, remote sensing data with higher resolution and diversity have been the mainstream in data analysis and processing. However, significant heterogeneities in the multi-source remote sensing data largely restrain its forest applications urging the research community to come up with effective synergistic strategies. The work presented in this thesis contributes to the field by exploring the potential of the Synthetic Aperture Radar (SAR), SAR Polarimetry (PolSAR), SAR Interferometry (InSAR), Polarimetric SAR Interferometry (PolInSAR), Light Detection and Ranging (LiDAR), and multispectral remote sensing in forest characterization and monitoring from three main aspects including forest height estimation, active fire detection, and burned area mapping. First, the forest height inversion is demonstrated using airborne L-band dual-baseline repeat-pass PolInSAR data based on modified versions of the Random Motion over Ground (RMoG) model, where the scattering attenuation and wind-derived random motion are described in conditions of homogeneous and heterogeneous volume layer, respectively. A boreal and a tropical forest test site are involved in the experiment to explore the flexibility of different models over different forest types and based on that, a leveraging strategy is proposed to boost the accuracy of forest height estimation. The accuracy of the model-based forest height inversion is limited by the discrepancy between the theoretical models and actual scenarios and exhibits a strong dependency on the system and scenario parameters. Hence, high vertical accuracy LiDAR samples are employed to assist the PolInSAR-based forest height estimation. This multi-source forest height estimation is reformulated as a pan-sharpening task aiming to generate forest heights with high spatial resolution and vertical accuracy based on the synergy of the sparse LiDAR-derived heights and the information embedded in the PolInSAR data. This process is realized by a specifically designed generative adversarial network (GAN) allowing high accuracy forest height estimation less limited by theoretical models and system parameters. Related experiments are carried out over a boreal and a tropical forest to validate the flexibility of the method. An automated active fire detection framework is proposed for the medium resolution multispectral remote sensing data. The basic part of this framework is a deep-learning-based semantic segmentation model specifically designed for active fire detection. A dataset is constructed with open-access Sentinel-2 imagery for the training and testing of the deep-learning model. The developed framework allows an automated Sentinel-2 data download, processing, and generation of the active fire detection results through time and location information provided by the user. Related performance is evaluated in terms of detection accuracy and processing efficiency. The last part of this thesis explored whether the coarse burned area products can be further improved through the synergy of multispectral, SAR, and InSAR features with higher spatial resolutions. A Siamese Self-Attention (SSA) classification is proposed for the multi-sensor burned area mapping and a multi-source dataset is constructed at the object level for the training and testing. Results are analyzed by different test sites, feature sources, and classification methods to assess the improvements achieved by the proposed method. All developed methods are validated with extensive processing of multi-source data acquired by Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR), Land, Vegetation, and Ice Sensor (LVIS), PolSARproSim+, Sentinel-1, and Sentinel-2. I hope these studies constitute a substantial contribution to the forest applications of multi-source remote sensing

    Spatial and temporal statistics of SAR and InSAR observations for providing indicators of tropical forest structural changes due to forest disturbance

    Get PDF
    Tropical forests are extremely important ecosystems which play a substantial role in the global carbon budget and are increasingly dominated by anthropogenic disturbance through deforestation and forest degradation, contributing to emissions of greenhouse gases to the atmosphere. There is an urgent need for forest monitoring over extensive and inaccessible tropical forest which can be best accomplished using spaceborne satellite data. Currently, two key processes are extremely challenging to monitor: forest degradation and post-disturbance re-growth. The thesis work focuses on these key processes by considering change indicators derived from radar remote sensing signal that arise from changes in forest structure. The problem is tackled by exploiting spaceborne Synthetic Aperture Radar (SAR) and Interferometric SAR (InSAR) observations, which can provide forest structural information while simultaneously being able to collect data independently of cloud cover, haze and daylight conditions which is a great advantage over the tropics. The main principle of the work is that a connection can be established between the forest structure distribution in space and signal variation (spatial statistics) within backscatter and Digital Surface Models (DSMs) provided by SAR. In turn, forest structure spatial characteristics and changes are used to map forest condition (intact or degraded) or disturbance. The innovative approach focuses on looking for textural patterns (and their changes) in radar observations, then connecting these patterns to the forest state through supporting evidence from expert knowledge and auxiliary remote sensing observations (e.g. high resolution optical, aerial photography or LiDAR). These patterns are descriptors of the forest structural characteristics in a statistical sense, but are not estimates of physical properties, such as above-ground biomass or canopy height. The thesis tests and develops methods using novel remote sensing technology (e.g. single-pass spaceborne InSAR) and modern image statistical analysis methods (wavelet-based space-scale analysis). The work is developed on an experimental basis and articulated in three test cases, each addressing a particular observational setting, analytical method and thematic context. The first paper deals with textural backscatter patterns (C-band ENVISAT ASAR and L-band ALOS PALSAR) in semi-deciduous closed forest in Cameroon. Analysis concludes that intact forest and degraded forest (arising from selective logging) are significantly different based on canopy structural properties when measured by wavelet based space-scale analysis. In this case, C-band data are more effective than longer wavelength L-band data. Such a result could be explained by the lower wave penetration into the forest volume at shorter wavelength, with the mechanism driving the differences between the two forest states arising from upper canopy heterogeneity. In the second paper, wavelet based space-scale analysis is also used to provide information on upper canopy structure. A DSM derived from TanDEM-X acquired in 2014 was used to discriminate primary lowland Dipterocarp forest, secondary forest, mixed-scrub and grassland in the Sungai Wain Protection Forest (East Kalimantan, Indonesian Borneo) which was affected by the 1997/1998 El Niรฑo Southern Oscillation (ENSO). The Jeffries- Matusita separability of wavelet spectral measures of InSAR DSMs between primary and secondary forest was in some cases comparable to results achieved by high resolution LiDAR data. The third test case introduces a temporal component, with change detection aimed at detecting forest structure changes provided by differencing TanDEM-X DSMs acquired at two dates separated by one year (2012-2013) in the Republic of Congo. The method enables cancelling out the component due to terrain elevation which is constant between the two dates, and therefore the signal related to the forest structure change is provided. Object-based change detection successfully mapped a gradient of forest volume loss (deforestation/forest degradation) and forest volume gain (post-disturbance re-growth). Results indicate that the combination of InSAR observations and wavelet based space-scale analysis is the most promising way to measure differences in forest structure arising from forest fires. Equally, the process of forest degradation due to shifting cultivation and post-disturbance re-growth can be best detected using multiple InSAR observations. From the experiments conducted, single-pass InSAR appears to be the most promising remote sensing technology to detect forest structure changes, as it provides three-dimensional information and with no temporal decorrelation. This type of information is not available in optical remote sensing and only partially available (through a 2D mapping) in SAR backscatter. It is advised that future research or operational endeavours aimed at mapping and monitoring forest degradation/regrowth should take advantage of the only currently available high resolution spaceborne single-pass InSAR mission (TanDEM-X). Moreover, the results contribute to increase knowledge related to the role of SAR and InSAR for monitoring degraded forest and tracking the process of forest degradation which is a priority but still highly challenging to detect. In the future the techniques developed in the thesis work could be used to some extent to support REDD+ initiatives

    ๊ฐ„์„ญ ๊ธด๋ฐ€๋„ ๋ชจ๋ธ ์—ฐ๊ตฌ์™€ ๋‹จ์ผ ๋ฐ ๋‹ค์ค‘ ํŽธํŒŒ SAR ์˜์ƒ์„ ํ™œ์šฉํ•œ ์ž์—ฐ ์žฌํ•ด ํƒ์ง€

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› ์ž์—ฐ๊ณผํ•™๋Œ€ํ•™ ์ง€๊ตฌํ™˜๊ฒฝ๊ณผํ•™๋ถ€, 2017. 8. ๊น€๋•์ง„.์ž์—ฐ ์žฌํ•ด์— ๋Œ€ํ•œ ๋น ๋ฅธ ๋Œ€์‘๊ณผ ๋ณต๊ตฌ๋ฅผ ์œ„ํ•ด์„œ๋Š” ํ”ผํ•ด ์ง€์—ญ์— ๋Œ€ํ•œ ํ‰๊ฐ€๊ฐ€ ์„ ํ–‰๋˜์–ด์•ผ ํ•˜๋ฉฐ, ๊ทธ๋Ÿฐ ์˜๋ฏธ๋กœ ํ”ผํ•ด ์ง€์—ญ์„ ํƒ์ง€ํ•˜๋Š” ๊ฒƒ์€ ๋งค์šฐ ์ค‘์š”ํ•˜๋‹ค. SAR ์‹œ์Šคํ…œ์€ ๊ธฐ์ƒ์  ์กฐ๊ฑด๊ณผ ์ฃผ์•ผ์— ๋ฌด๊ด€ํ•˜๊ฒŒ ์˜์ƒ์„ ํš๋“ํ•  ์ˆ˜ ์žˆ์œผ๋ฏ€๋กœ, ๋ณ€ํ™” ํ˜น์€ ํ”ผํ•ด ์ง€์—ญ์„ ํƒ์ง€ํ•  ์ˆ˜ ์žˆ๋Š” ํšจ์œจ์ ์ธ ๋ฐฉ๋ฒ•์ด๋ผ๊ณ  ์•Œ๋ ค์ ธ ์žˆ๋‹ค. ๋˜ํ•œ SAR ์‹œ์Šคํ…œ์„ ํ†ตํ•˜์—ฌ ๊ณ„์‚ฐํ•  ์ˆ˜ ์žˆ๋Š” ๊ธด๋ฐ€๋„ (coherence)๋Š” ์ง€ํ‘œ์˜ ์‚ฐ๋ž€์ฒด์˜ ์›€์ง์ž„ ํ˜น์€ ์œ ์ „์  ์„ฑ์งˆ์— ๋ณ€ํ™”์— ๋งค์šฐ ๋ฏผ๊ฐํ•˜๊ฒŒ ๋ฐ˜์‘ํ•˜๊ธฐ ๋•Œ๋ฌธ์— ํ”ผํ•ด๋ฅผ ํƒ์ง€ํ•˜๊ธฐ์— ์ ํ•ฉํ•˜๋‹ค๊ณ  ํ‰๊ฐ€๋˜์–ด ์™”๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๊ธด๋ฐ€๋„๋ฅผ ์ด์šฉํ•œ ์ž์—ฐ์žฌํ•ด์˜ ํ”ผํ•ด ํƒ์ง€์—๋Š” ์–ด๋ ค์›€์ด ์กด์žฌํ•  ์ˆ˜ ์žˆ๋‹ค. ์ฆ‰, ํƒ์ง€ํ•˜๊ณ ์ž ํ•˜๋Š” ์ž์—ฐ์žฌํ•ด๋กœ ์ธํ•œ ํ”ผํ•ด์™€ ๋น„, ๋ˆˆ, ๋ฐ”๋žŒ๊ณผ ๊ฐ™์€ ๊ธฐ์ƒํ˜„์ƒ, ํ˜น์€ ์‹์ƒ์˜ ์ž์—ฐ์ ์ธ ๋ณ€ํ™”๊ฐ€ ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์ด ๊ธด๋ฐ€๋„์—์„œ๋Š” ์œ ์‚ฌํ•˜๊ฒŒ ๋ฐœ์ƒํ•  ์ˆ˜ ์žˆ๊ธฐ ๋•Œ๋ฌธ์ด๋‹ค. ์ด๊ฒƒ์€ ๋ ˆ์ด๋” ์‹ ํ˜ธ์˜ ๊ธด๋ฐ€๋„๊ฐ€ ๋ฏธ์„ธํ•œ ๋ณ€ํ™”์—๋„ ๋ฏผ๊ฐํ•˜๊ฒŒ ๋ฐ˜์‘ํ•˜๋Š” ํŠน์ง•์œผ๋กœ๋ถ€ํ„ฐ ๊ธฐ์ธํ•œ๋‹ค. ๊ทธ๋Ÿฌ๋ฏ€๋กœ ์ž์—ฐ ํ˜„์ƒ์œผ๋กœ๋ถ€ํ„ฐ ๋ฐœ์ƒํ•˜๋Š” ๊ธด๋ฐ€๋„ ๊ฐ์†Œ ํ˜„์ƒ์€ ํ”ผํ•ด ํƒ์ง€ ์•Œ๊ณ ๋ฆฌ์ฆ˜์—์„œ ์˜คํƒ์ง€์œจ์„ ์ฆ๊ฐ€์‹œํ‚ค๋Š” ์›์ธ์ด ๋˜๋ฉฐ, ์ž์—ฐ ์žฌํ•ด์˜ ์˜ํ–ฅ๊ณผ ๋ถ„๋ฆฌํ•ด์•ผ ํ•  ํ•„์š”์„ฑ์ด ์žˆ๋‹ค. ๋˜ํ•œ ๋‹ค์–‘ํ•œ ์ง€ํ‘œ ํŠน์„ฑ์„ ๊ฐ€์ง€๋Š” ํ”ฝ์…€๋“ค์€ ์ž์—ฐ ํ˜„์ƒ์— ๋Œ€ํ•œ ๊ฐ๊ธฐ ๋‹ค๋ฅธ ๊ธด๋ฐ€๋„ ํŠน์„ฑ์„ ๊ฐ€์ง€๊ณ  ์žˆ๊ธฐ ๋•Œ๋ฌธ์— ์ •ํ™•ํ•œ ํ”ผํ•ด ํƒ์ง€๋ฅผ ์œ„ํ•ด์„œ๋Š” ๊ฐ ํ”ฝ์…€๋“ค์—์„œ์˜ ๋…๋ฆฝ์ ์ธ ํ‰๊ฐ€๊ฐ€ ํ•„์š”ํ•˜๋‹ค. ๊ธด๋ฐ€๋„๋ฅผ ๊ฒฐ์ •ํ•˜๋Š” ์š”์ธ๋“ค์ด ๋‹ค์–‘ํ•˜๊ณ  ๋ณตํ•ฉ์ ์œผ๋กœ ์ž‘์šฉํ•˜๊ธฐ ๋•Œ๋ฌธ์— ํ•ด์„์— ์–ด๋ ค์›€์ด ์žˆ๋‹ค๋Š” ์  ์—ญ์‹œ ๊ธด๋ฐ€๋„ ๊ธฐ๋ฐ˜ ํ”ผํ•ด ํƒ์ง€ ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ํ•œ๊ณ„์ ์ด๋‹ค. ํŠนํžˆ ์‹์ƒ์ด ์กด์žฌํ•˜๋Š” ์ง€์—ญ์—์„œ์˜ ๊ธด๋ฐ€๋„์˜ ๋ณ€ํ™”๋Š” ๋”์šฑ ๋ณต์žกํ•˜๊ฒŒ ๋‚˜ํƒ€๋‚  ์ˆ˜ ์žˆ๋‹ค. ๊ทธ ์ด์œ ๋Š” ์œ ์ „์  ์„ฑ์งˆ์„ ์ง€๋‹ˆ๊ณ  ์žˆ๋Š” ์‚ฐ๋ž€์ฒด๋“ค์ด ์‹์ƒ์—์„œ๋Š” ์ˆ˜์ง์ ์œผ๋กœ ๋ถ„ํฌํ•˜๋ฉฐ, ํŒŒ์žฅ์ด ๊ธด ๋ ˆ์ด๋” ์‹ ํ˜ธ๊ฐ€ ์ด๋ฅผ ํˆฌ๊ณผํ•จ์— ๋”ฐ๋ผ ์‹์ƒ์˜ ์ƒ์ธต๋ถ€๋ถ€ํ„ฐ ํ•˜์ธต๋ถ€ ๋˜ํ•œ ์ง€ํ‘œ๋ฉด๊นŒ์ง€ ๋„๋‹ฌ๋˜์–ด ์‚ฐ๋ž€๋˜์–ด ๊ธด๋ฐ€๋„๋ฅผ ๊ฐ์†Œ์‹œํ‚ค๋Š” ์ฒด์  ๊ธด๋ฐ€๋„ ๊ฐ์†Œ ํ˜„์ƒ(volume decorrelation) ๋•Œ๋ฌธ์ด๋‹ค. ํš๋“ ์‹œ๊ฐ„์ด ๋™์ผํ•˜์ง€ ์•Š์€ ๋‘ ์žฅ์˜ SAR ์˜์ƒ์„ ์‚ฌ์šฉํ•˜๋Š” repeat-pass ๊ฐ„์„ญ๊ธฐ๋ฒ•์—์„œ๋Š” ๊ฐ ์‹์ƒ์˜ ๊ฐ ๋ถ€๋ถ„์—์„œ ๋ฐœ์ƒ๋˜๋Š” ๋ณ€ํ™” ์ •๋ณด(temporal decorrelation)๋„ ๋™์‹œ์— ๊ธฐ๋ก๋˜๊ธฐ ๋•Œ๋ฌธ์— ํ•ด์„์€ ๋”์šฑ ์–ด๋ ค์›Œ์ง„๋‹ค. ๊ทธ๋Ÿฌ๋ฏ€๋กœ ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๋‹ค์ค‘ ์‹œ๊ธฐ ๊ธด๋ฐ€๋„๋ฅผ ์ด์šฉํ•˜์—ฌ ์ž์—ฐ ํ˜„์ƒ์„ ํ•ด์„ ํ•  ์ˆ˜ ์žˆ๋Š” ๋ชจ๋ธ์„ ์ œ์ž‘ํ•˜๊ณ  ์ด๋ฅผ ๋ณ€ํ™” ํƒ์ง€ ์•Œ๊ณ ๋ฆฌ์ฆ˜์œผ๋กœ ํ™•์žฅํ•˜์—ฌ, ์ ์šฉ ๊ฐ€๋Šฅ์„ฑ์„ ํ‰๊ฐ€ํ•˜๊ณ  ์ •๋ฐ€ํ•œ ํ”ผํ•ด ์ง€์—ญ์„ ์ถ”์ถœํ•˜๋Š” ๊ฒƒ์„ ๋ชฉ์ ์œผ๋กœ ํ•œ๋‹ค. ์ด๋ฅผ ์œ„ํ•˜์—ฌ ์ฒซ ๋ฒˆ์งธ๋กœ๋Š” ๊ฐ„์„ญ ๊ธฐ๋ฒ•์—์„œ์˜ ์‹œ๊ฐ„ ์ฐจ์ด(temporal baseline)์ด ๊ธธ ๋•Œ, ๋‹ค์ค‘ ์‹œ๊ธฐ ๊ธด๋ฐ€๋„(multi-temporal coherence)๋ฅผ ํ•ด์„ํ•  ์ˆ˜ ์žˆ๋Š” ๋ชจ๋ธ์„ ์ œ์ž‘ํ•˜๋Š” ๊ฒƒ์„ ๋ชฉ์ ์œผ๋กœ ํ•˜์˜€๋‹ค. ๋‘ ๋ฒˆ์งธ๋กœ๋Š” ๋‹จ์ผ ํŽธํŒŒ์˜ ๋‹ค์ค‘ ์‹œ๊ธฐ SAR ์˜์ƒ์—์„œ ๊ด€์ธก๋˜๋Š” ๊ธด๋ฐ€๋„๋ฅผ ํ•ด์„ํ•˜๊ณ , ๋ชจ๋ธ ํŒŒ๋ผ๋ฏธํ„ฐ๋ฅผ ์ถ”์ถœํ•˜๋ฉฐ, ๊ฒฐ๊ณผ์ ์œผ๋กœ ํ”ผํ•ด๋ฅผ ํƒ์ง€ํ•˜๊ธฐ ์œ„ํ•œ ๋ฐฉ๋ฒ•์„ ๊ธฐ์ˆ ํ•˜๊ณ ์ž ํ•˜์˜€๋‹ค. ์„ธ ๋ฒˆ์งธ๋กœ๋Š” ๋‹ค์ค‘ํŽธํŒŒ์˜ ๋‹ค์ค‘ ์‹œ๊ธฐ SAR ์˜์ƒ์— ๋Œ€ํ•œ ํ•ด์„ ๋ฐฉ๋ฒ•์— ๋Œ€ํ•œ ์—ฐ๊ตฌ๋ฅผ ์ง„ํ–‰ํ•˜๋Š” ๊ฒƒ์„ ๋ชฉ์ ์œผ๋กœ ํ•˜์˜€๋‹ค. 2์žฅ์—์„œ๋Š” ๊ธด๋ฐ€๋„์˜ ์ธก์ •๊ณผ ๊ธด๋ฐ€๋„๋ฅผ ๊ฒฐ์ •ํ•˜๋Š” ๋Œ€ํ‘œ์  ์š”์ธ์— ๋Œ€ํ•˜์—ฌ ๋ถ„์„ํ•˜์˜€๊ณ  ์‹œ๊ณ„์—ด ๊ธด๋ฐ€๋„ ๊ฐ์†Œ ๋ชจ๋ธ์„ ์ˆ˜์‹ํ™”ํ•˜์˜€๋‹ค. ๊ธด๋ฐ€๋„ ์š”์ธ ์ค‘ ์ฒซ ๋ฒˆ์งธ๋Š” ์—ด์žก์Œ ๊ธด๋ฐ€๋„ ๊ฐ์†Œ(thermal decorrelation)๋กœ์„œ, ์—ด ์žก์Œ (thermal noise)๋กœ๋ถ€ํ„ฐ ๊ธฐ์ธ๋˜๋ฉฐ, ๊ฐ ์‚ฐ๋ž€์ฒด์˜ ์‹ ํ˜ธ๋Œ€ ์žก์Œ๋น„(signal-to-noise ratio)์™€ ๋ฐ€์ ‘ํ•œ ๊ด€๋ จ์ด ์žˆ๋‹ค. ๋‘ ๋ฒˆ์งธ๋Š” ๊ธฐํ•˜ํ•™์  ๋น„์ƒ๊ด€์„ฑ(geometric decorrelation)์œผ๋กœ, ๋‘ ์„ผ์„œ๊ฐ€ ๋‹ค๋ฅธ ์œ„์น˜์—์„œ ์‹ ํ˜ธ๋ฅผ ์†ก์ˆ˜์‹ ํ•  ๋•Œ ์ง€์ƒ์— ํˆฌ์˜๋˜๋Š” ํŒŒ์ˆ˜์˜ ์ŠคํŽ™ํŠธ๋Ÿผ์ด ์ด๋™ํ•จ์— ๋”ฐ๋ผ ๋ฐœ์ƒํ•œ๋‹ค. ์„ธ ๋ฒˆ์งธ ์š”์ธ์€ ์ผ๋ฐ˜์ ์œผ๋กœ ์ฒด์  ๋น„์ƒ๊ด€์„ฑ (volume decorrelation)์ด๋ผ ์–ธ๊ธ‰๋˜๋Š” ๊ฒƒ์œผ๋กœ ์ง€์ƒ์˜ ๋งค์งˆ ์•ˆ์— ์‚ฐ๋ž€์ฒด๊ฐ€ ๋žœ๋คํ•˜๊ฒŒ ๋ถ„ํฌํ•˜๊ณ  ์ „์žํŒŒ๊ฐ€ ์ด๋ฅผ ํˆฌ๊ณผํ•  ๋•Œ ๋ฐœ์ƒํ•˜๋Š” ์œ„์ƒ์ฐจ์ด์— ์˜ํ•˜์—ฌ ๋ฐœ์ƒ๋œ๋‹ค. ์ฒด์  ๋น„์ƒ๊ด€์„ฑ์€ ์‹์ƒ์—์„œ ์ฃผ๋กœ ๊ด€์ฐฐ๋˜๋ฉฐ, ์ด๋ฅผ ์„ค๋ช…ํ•˜๊ธฐ ์œ„ํ•˜์—ฌ RVoG ๋ชจ๋ธ์ด ์ œ์•ˆ๋˜๊ธฐ๋„ ํ•˜์˜€๋‹ค. RVoG ๋ชจ๋ธ์€ ์‹์ƒ์˜ ์žŽ์„ ํฌํ•จํ•˜๋Š” ์ฒด์  ๋ ˆ์ด์–ด์™€ ์‹์ƒ ํ•˜๋ถ€์˜ ์ง€ํ‘œ ๋ ˆ์ด์–ด๋ฅผ ํฌํ•จํ•˜๋Š” ๋ชจ๋ธ๋กœ์„œ, ๋‘ ๋ ˆ์ด์–ด์—์„œ ๊ฒฐ์ •๋˜๋Š” ๊ฐ„์„ญ๊ธฐ๋ฒ•์˜ ์œ„์ƒ ๋ฐ ๊ธด๋ฐ€๋„๋ฅผ ์„ค๋ช…ํ•œ๋‹ค. ๋งˆ์ง€๋ง‰ ์š”์ธ์€ ๋‘ ์˜์ƒ ์‚ฌ์ด์— ์‚ฐ๋ž€์ฒด๊ฐ€ ๋ณ€ํ™”ํ•  ๋•Œ ๋ฐœ์ƒํ•˜๋Š” ์‹œ๊ฐ„ ๋น„์ƒ๊ด€์„ฑ(temporal decorrelation)์ด๋‹ค. ํ”ฝ์…€ ์•ˆ์˜ ์‚ฐ๋ž€์ฒด๊ฐ€ ๋น„๊ท ์งˆํ•˜๊ฒŒ ์ด๋™ํ•˜๊ฑฐ๋‚˜, ์œ ์ „์ฒด์˜ ์„ฑ์งˆ์ด ๋ณ€ํ™”ํ•  ๊ฒฝ์šฐ ๋ฐœ์ƒํ•œ๋‹ค. ์ผ๋ฐ˜์ ์ธ repeat-pass ๊ฐ„์„ญ๊ธฐ๋ฒ•์˜ ๊ฒฝ์šฐ ์‹œ๊ฐ„ ๋น„์ƒ๊ด€์„ฑ์ด ๋งค์šฐ ์šฐ์„ธํ•˜๊ฒŒ ๋‚˜ํƒ€๋‚˜๋Š” ๊ฒฝ์šฐ๊ฐ€ ๋งŽ์œผ๋ฉฐ, ์‹์ƒ์˜ ๊ฒฝ์šฐ ์ฒด์  ๋น„์ƒ๊ด€์„ฑ๊ณผ ์‹œ๊ฐ„ ๋น„์ƒ๊ด€์„ฑ์ด ๋™์‹œ์— ์šฐ์„ธํ•˜๊ฒŒ ๋‚˜ํƒ€๋‚œ๋‹ค. ์‹์ƒ์—์„œ ๊ด€์ฐฐ๋˜๋Š” ์ฒด์  ๋น„์ƒ๊ด€์„ฑ๊ณผ ์‹œ๊ฐ„ ๋น„์ƒ๊ด€์„ฑ์„ ๋™์‹œ์— ์„ค๋ช…ํ•˜๋Š” RMoG ๋ชจ๋ธ์ด ์ œ์•ˆ๋œ ๋ฐ” ์žˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์ƒ๋Œ€์ ์œผ๋กœ ๊ธด ์‹œ๊ฐ„ ์ฐจ์ด๋ฅผ ๊ฐ€์ง€๊ณ  ์žˆ๋Š” repeat-pass ๊ฐ„์„ญ๊ธฐ๋ฒ•์—์„œ ๊ด€์ธก๋˜๋Š” ๊ธด๋ฐ€๋„ ๋ชจ๋ธ์„ ๊ณ ์•ˆํ•˜์˜€๋‹ค. ์‹œ๊ฐ„ ๋น„์ƒ๊ด€์„ฑ์„ ๋‹ค๋ฃจ๋Š” RMoG ๋ชจ๋ธ์€ ๋‘ ์˜์ƒ์˜ ์‹œ๊ฐ„ ์ฐจ์ด๊ฐ€ ํฌ์ง€ ์•Š์„ ๊ฒฝ์šฐ, ์‚ฐ๋ž€์ฒด์˜ ์ด๋™์ด ์‹œ๊ฐ„ ๋น„์ƒ๊ด€์„ฑ์„ ๋ฐœ์ƒ์‹œํ‚ค๋Š” ์ฃผ๋œ ์š”์ธ์ด๋ผ๋Š” ๊ฐ€์ •ํ•˜์— ์ œ์ž‘๋˜์—ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ผ๋ฐ˜์ ์ธ ์ธ๊ณต์œ„์„ฑ SAR๋Š” ์ˆ˜ ์ผ ์ด์ƒ์˜ ์‹œ๊ฐ„ ์ฐจ์ด๋ฅผ ๊ฐ€์ง€๊ณ  ์žˆ์œผ๋ฉฐ, ๋‹ค์ค‘ ์‹œ๊ธฐ์˜ SAR ์˜์ƒ์„ ๋‹ค๋ฃฐ ๊ฒฝ์šฐ, ๊ฐ๊ฐ์˜ ์‹œ๊ฐ„ ์ฐจ์ด๋Š” ์ƒ์ดํ•˜๊ฒŒ ๋‚˜ํƒ€๋‚œ๋‹ค. ์ด ๊ฒฝ์šฐ ์‹œ๊ฐ„ ๋น„์ƒ๊ด€์„ฑ์„ ๋ฐœ์ƒ์‹œํ‚ค๋Š” ์š”์ธ์„ ์‚ฐ๋ž€์ฒด์˜ ์ด๋™๋งŒ์œผ๋กœ ์„ค๋ช…ํ•˜๋Š” ๊ธฐ์—๋Š” ์–ด๋ ค์›€์ด ์žˆ๋‹ค. ๊ทธ๋Ÿฌ๋ฏ€๋กœ ๋ณธ ์—ฐ๊ตฌ์—์„œ ๊ณ ์•ˆ๋œ ๋ชจ๋ธ์€ ์ง€ํ‘œ์—์„œ์˜ ๋ณ€ํ™”๋ฅผ ์‚ฐ๋ž€์ฒด์˜ ์ด๋™๊ณผ ์œ ์ „์ฒด์˜ ์„ฑ์งˆ ๋ณ€ํ™”๊ฐ€ ๊ฒฐํ•ฉ๋œ ์ƒํƒœ๋กœ ๊ฐ€์ •ํ•˜์˜€์œผ๋ฉฐ, ์‹์ƒ์˜ ์ฒด์  ๋ถ€๋ถ„์€ ์‚ฐ๋ž€์ฒด์˜ ์›€์ง์ž„์ด ์ฒด์ ์—์„œ์˜ ์‹œ๊ฐ„ ๊ธด๋ฐ€๋„๋ฅผ ๊ฐ์†Œ์‹œํ‚ค๋Š” ์ฃผ๋œ ์š”์ธ์œผ๋กœ ์ƒ๊ฐํ•˜์˜€๋‹ค. ๋˜ํ•œ ๋‹ค์ค‘ ์‹œ๊ธฐ์˜ SAR ์˜์ƒ์œผ๋กœ๋ถ€ํ„ฐ ๊ณ„์‚ฐ๋œ ๊ธด๋ฐ€๋„๋Š” ์‹œ๊ฐ„ ์ฐจ์ด๊ฐ€ ์ฆ๊ฐ€ํ•จ์— ๋”ฐ๋ผ ๊ธด๋ฐ€๋„๊ฐ€ ๊ฐ์†Œํ•˜๋Š” ํ˜„์ƒ์„ ๊ด€์ธกํ•  ์ˆ˜ ์žˆ๋‹ค. ์ด๋Ÿฌํ•œ ํŠน์ง•์€ ์‹œ๊ฐ„ ์ฐจ์ด๊ฐ€ ๊ธธ ๊ฒฝ์šฐ ๋งค์šฐ ํฌ๊ฒŒ ๋‚˜ํƒ€๋‚  ์ˆ˜ ์žˆ์ง€๋งŒ, ์ด์ „์˜ ๋ชจ๋ธ์€ ์‹œ๊ฐ„ ์ฐจ์ด๊ฐ€ ์งง์€ ๊ฒฝ์šฐ๋ฅผ ๊ฐ€์ •ํ•˜์˜€๊ธฐ ๋•Œ๋ฌธ์— ๊ทธ ์˜ํ–ฅ์ด ์ค‘์š”ํ•˜์ง€ ์•Š์•˜๋‹ค. ๊ทธ๋Ÿฌ๋ฏ€๋กœ ๋ณธ ๋ชจ๋ธ์—์„œ๋Š” ๊ธฐ์กด ๋ชจ๋ธ๊ณผ๋Š” ๋‹ค๋ฅด๊ฒŒ ๋‘ ์˜์ƒ์˜ ์‹œ๊ฐ„ ์ฐจ์ด๊ฐ€ ์ฆ๊ฐ€ํ•จ์— ๋”ฐ๋ผ ๊ธด๋ฐ€๋„๊ฐ€ ๊ฐ์†Œํ•˜๋Š” ํ˜„์ƒ์„ ์„ค๋ช…ํ•˜๊ณ ์ž ์ง€์ˆ˜ ํ˜•ํƒœ์˜ ํ•จ์ˆ˜๋ฅผ ์ง€ํ‘œ ์™€ ์ฒด์  ๋ ˆ์ด์–ด์— ๊ฐ๊ฐ ๋„์ž…ํ•˜์˜€๊ณ  ์ด๋ฅผ ์‹œ๊ฐ„ ์ข…์†์  ๊ธด๋ฐ€๋„(temporally-correlated coherence). ์ฆ‰, ์ฒด์ ๊ณผ ์ง€ํ‘œ์˜ ๋‘ ๋ ˆ์ด์–ด ์ƒ์—์„œ ๊ฐ๊ฐ์˜ ์‹œ๊ฐ„์— ๋”ฐ๋ผ์„œ ๊ฐ์†Œํ•˜๊ฒŒ ๋˜๋ฉฐ, ์ด๋Š” ํŠน์ •ํ•œ ์‹œ๊ฐ„ ์ฐจ์ด์—์„œ ๊ธด๋ฐ€๋„๊ฐ€ ํ˜•์„ฑ๋˜์—ˆ์„ ๋•Œ ํŠน๋ณ„ํ•œ ํ˜„์ƒ์ด ์—†์„ ๊ฒฝ์šฐ ์˜ˆ์ธก๋  ์ˆ˜ ์žˆ๋Š” ๊ฐ’์œผ๋กœ ์ƒ๊ฐํ•  ์ˆ˜ ์žˆ๋‹ค. ๋ฐ˜๋ฉด, ์˜ˆ์ธก๋˜๋Š” ๊ฐ’๊ณผ ์‹ค์ œ ๊ด€์ธก๊ฐ’๊ณผ๋Š” ์ฐจ์ด๊ฐ€ ์กด์žฌํ•˜๋ฏ€๋กœ ์ด๋Š” ์‹œ๊ฐ„ ๋…๋ฆฝ์  ๊ธด๋ฐ€๋„(temporally uncorrelated-coherence)๋กœ ํ•ด์„ํ•˜์˜€๋‹ค. ์ฒด์ ๊ณผ ์ง€ํ‘œ์˜ ์‹œ๊ฐ„ ๊ธด๋ฐ€๋„ ๊ฐ์†Œ ํ˜„์ƒ์€ ์ „์ฒด ๊ธด๋ฐ€๋„์— ์˜ํ–ฅ์„ ์ฃผ๊ธฐ ๋•Œ๋ฌธ์— ์ด๋ฅผ ์ง€ํ‘œ์™€ ์ฒด์ ์˜ ๋น„๋ฅผ ๋„์ž…ํ•˜์—ฌ, ๊ฐ๊ฐ์˜ ํšจ๊ณผ๊ฐ€ ์ „์ฒด ๊ธด๋ฐ€๋„์— ์ฃผ๋Š” ์˜ํ–ฅ์— ๋Œ€ํ•˜์—ฌ ์ •๋Ÿ‰ํ™”ํ•˜์˜€๋‹ค. 3์žฅ์—์„œ๋Š” ์ œ์•ˆ๋œ ๋ชจ๋ธ์„ ๊ธฐ๋ฐ˜์œผ๋กœ ๋‹จ์ผ ํŽธํŒŒ์˜ ๋‹ค์ค‘ ์‹œ๊ธฐ SAR ์˜์ƒ์— ๋Œ€ํ•˜์—ฌ ๊ธด๋ฐ€๋„ ๋ณ€ํ™” ํƒ์ง€ ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ํ•ด์„์ด ๊ณ ์•ˆ๋˜์—ˆ๋‹ค. ๋ณธ ๋ฐฉ๋ฒ•์€ ์ผ๋ณธ์˜ ํ‚ค๋ฆฌ์‹œ๋งˆ ํ™”์‚ฐ์˜ 2011๋…„ ํ™”์‚ฐ ํญ๋ฐœ๋กœ ๋ฐœ์ƒํ•˜์˜€๋˜ ํ™”์‚ฐ์žฌ๋ฅผ ํƒ์ง€ ํ•˜๋Š” ๊ฒƒ์„ ๋ชฉ์ ์œผ๋กœ ํ•˜์˜€์œผ๋ฉฐ, ๋ณธ ๋ชฉ์ ์„ ์œ„ํ•˜์—ฌ ๋‹จ์ผ ํŽธํŒŒ์˜ ALOS PALSAR ์˜์ƒ์ด ์‚ฌ์šฉ๋˜์—ˆ๋‹ค. SAR ์˜์ƒ์„ ์ด์šฉํ•˜์—ฌ ์‹œ๊ฐ„ ์ฐจ์ด๊ฐ€ ๋‹ค์–‘ํ•˜๊ฒŒ ๊ธด๋ฐ€๋„๊ฐ€ ์ œ์ž‘๋˜์—ˆ๋‹ค. ์‚ฌ์šฉํ•œ multi-looking์€ 32 look์œผ๋กœ ๊ธด๋ฐ€๋„์˜ ๋ฐ”์ด์–ด์Šค๊ฐ€ ๋น„๊ต์  ์ž‘์Œ์„ ์˜๋ฏธํ•œ๋‹ค. ๋˜ํ•œ ํ”ฝ์…€์˜ ๋Œ€๋ถ€๋ถ„์—์„œ์˜ ์—ด์  ๋น„์ƒ๊ด€์„ฑ(thermal decorrelation)์€ ๋ฌด์‹œํ•  ์ˆ˜ ์žˆ์„ ์ •๋„๋กœ ๋‚˜ํƒ€๋‚ฌ์œผ๋ฉฐ, ๊ธฐํ•˜ํ•™์  ๋น„์ƒ๊ด€์„ฑ(geometric decorrelation)์€ common-wave spectral filtering์„ ์‚ฌ์šฉํ•˜์—ฌ ๊ฐ์†Œ๋˜์—ˆ๋‹ค. ๋˜ํ•œ ๋Œ€์ƒ ํ™”์‚ฐ์€ ์‹์ƒ์ด ๋ถ„ํฌํ•˜๊ณ  ์žˆ๊ธฐ ๋•Œ๋ฌธ์— ์ฒด์  ๋น„์ƒ๊ด€์„ฑ(volume decorrelation)์„ ์ตœ์†Œํ™”ํ•˜์—ฌ์•ผ ํ•  ํ•„์š”์„ฑ์ด ์žˆ๋‹ค. ์ฒด์  ๋น„์ƒ๊ด€์„ฑ์€ ์‹์ƒ์˜ ๋†’์ด, ์‹์ƒ์˜ ์ˆ˜์ง์ ์ธ ๊ตฌ์กฐ, ๋‘ ๋ ˆ์ด๋” ์„ผ์„œ์˜ ๊ธฐ์„ ๊ฑฐ๋ฆฌ(spatial baseline)๋“ฑ์— ์˜ํ•˜์—ฌ ๊ฒฐ์ •๋œ๋‹ค. ์‹์ƒ์˜ ๋ฌผ๋ฆฌ์ ์ธ ํŒŒ๋ผ๋ฏธํ„ฐ๋Š” ์—ฐ๊ตฌ์—์„œ ์ˆ˜์ •ํ•  ์ˆ˜ ์žˆ๋Š” ๋ณ€์ˆ˜๊ฐ€ ์•„๋‹Œ ๋ฐ˜๋ฉด, ๋‹ค์ค‘ ์‹œ๊ธฐ์—์„œ ๋งŒ๋“ค์–ด ์ง„ ์˜์ƒ์€ ๋‹ค์ˆ˜์˜ ๊ธฐ์„ ๊ฑฐ๋ฆฌ๋ฅผ ๊ฐ€์ง€๊ณ  ์žˆ๊ธฐ ๋•Œ๋ฌธ์— ๊ธฐ์„ ๊ฑฐ๋ฆฌ์— ๋Œ€ํ•œ ์กฐ๊ฑด์ด ์„ค์ •ํ•จ์œผ๋กœ์จ ์ฒด์  ๋น„์ƒ๊ด€์„ฑ์„ ์ตœ์†Œํ™” ํ•  ์ˆ˜ ์žˆ๋‹ค. RVoG ๋ชจ๋ธ์„ ๊ธฐ๋ฐ˜์œผ๋กœ ๊ณ„์‚ฐ๋œ ๊ฒฐ๊ณผ ALOS PALSAR์˜ ๊ฒฝ์šฐ ์•ฝ 1000m์˜ ๊ธฐ์„ ๊ฑฐ๋ฆฌ๋ฅผ ๊ฐ€์ง€๊ณ  ์žˆ์„ ๋•Œ ์ฒด์  ๊ธด๋ฐ€๋„๋Š” ์•ฝ 0.94 ์ด์ƒ์ด ๋จ์„ ์•Œ ์ˆ˜ ์žˆ์œผ๋ฉฐ, ์ด๋Š” ์ฒด์  ๊ธด๋ฐ€๋„๋ฅผ ๊ณ ๋ คํ•˜์ง€ ์•Š์•„๋„ ๋จ์„ ์˜๋ฏธํ•œ๋‹ค. ์•ž์„œ 2์žฅ์—์„œ ์ œ์•ˆ๋œ ๊ธด๋ฐ€๋„ ๋ชจ๋ธ์˜ ํŒŒ๋ผ๋ฏธํ„ฐ์˜ ์ถ”์ถœ์„ ์œ„ํ•˜์—ฌ ์ž๋ฃŒ๋Š” ํ™”์‚ฐ ํญ๋ฐœ ์ „์˜ ๊ฐ„์„ญ์Œ๊ณผ ํ™”์‚ฐํญ๋ฐœ ์ „ํ›„์˜ ๊ฐ„์„ญ์Œ์˜ ๋‘ ๊ทธ๋ฃน์œผ๋กœ ๋‚˜๋ˆ„์–ด์กŒ๋‹ค. ์šฐ์„  ํ™”์‚ฐ ํญ๋ฐœ ์ด์ „์˜ ๊ธด๋ฐ€๋„์— ๋Œ€ํ•œ ํ•ด์„ ๋ฐ ์ดํ•ด๋ฅผ ์œ„ํ•˜์—ฌ ๊ธด๋ฐ€๋„ ๋ชจ๋ธ์ด ์ ์šฉ๋˜์—ˆ๋‹ค. ๋ชจ๋ธ ํŒŒ๋ผ๋ฏธํ„ฐ์—์„œ ์ค‘์š”ํ•œ ๊ฒƒ์€ ๋ชจ๋ธ์— ํฌํ•จ๋˜์–ด ์žˆ๋Š” ํŒŒ๋ผ๋ฏธํ„ฐ์˜ ์ˆ˜์™€ ๊ด€์ธก ๊ฐ’์˜ ์ˆ˜๋กœ, ๊ด€์ธก๊ฐ’์ด ์ถฉ๋ถ„ํ•  ๊ฒฝ์šฐ์—๋งŒ ์ •ํ™•ํ•œ ๋ชจ๋ธ ํŒŒ๋ผ๋ฏธํ„ฐ ์ถ”์ถœ์ด ๊ฐ€๋Šฅํ•˜๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๋‹จ์ผ ํŽธํŒŒ์˜ ๋‹ค์ค‘ ์‹œ๊ธฐ ์˜์ƒ์„ ๋‹ค๋ฃจ๋Š” ๊ฒฝ์šฐ ๋ฏธ์ง€์ˆ˜์˜ ๊ฐœ์ˆ˜๊ฐ€ ๋” ๋งŽ๊ธฐ ๋•Œ๋ฌธ์— ์ •ํ™•ํ•œ ๋ชจ๋ธ ํŒŒ๋ผ๋ฏธํ„ฐ ์ถ”์ถœ์€ ์–ด๋ ค์šธ ์ˆ˜ ์žˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๋ชจ๋ธ์˜ ํŠน์„ฑ์„ ์ด์šฉํ•œ ๊ฐ€์ •์„ ๋ฐ”ํƒ•์œผ๋กœ ๋ชจ๋ธ ํŒŒ๋ผ๋ฏธํ„ฐ๋ฅผ ์ถ”์ถœํ•˜๊ณ ์ž ํ•˜์˜€๋‹ค. ๋ชจ๋ธ ํŒŒ๋ผ๋ฏธํ„ฐ ์ถ”์ถœ์˜ ์ฒซ ๋ฒˆ์งธ๋Š” ์ง€ํ‘œ๋Œ€ ์ฒด์ ๋น„ ๋ฐ ์‹œ๊ฐ„ ์ข…์†์  ๊ธด๋ฐ€๋„์˜ ์ถ”์ •์œผ๋กœ ์ด๋Š” ๋‘ ์ง€์ˆ˜ ํ˜•ํƒœ์˜ ๊ณก์„  ์ ํ•ฉ(curve fitting)์œผ๋กœ ์ˆ˜ํ–‰๋˜์—ˆ๋‹ค. ๋ณธ ๊ฒฐ๊ณผ๋กœ๋ถ€ํ„ฐ ์ถ”์ถœ๋œ ๊ฐ ํ”ฝ์…€์˜ ํŠน์ง•์  ์‹œ๊ฐ„ ์ƒ์ˆ˜(characteristic time constant)๋Š” ๊ทธ ํ”ฝ์…€์ด ์‹œ๊ฐ„์˜ ๋ณ€ํ™”์— ๋”ฐ๋ผ ๊ธด๋ฐ€๋„์˜ ์•ˆ์ •์„ฑ์„ ๋ณด์ด๋Š” ์ƒ์ˆ˜๋กœ, ๋†’์„์ˆ˜๋ก ๊ธด ์‹œ๊ฐ„ ์ฐจ์ด์—๋„ ๊ธด๋ฐ€๋„๊ฐ€ ๋†’์Œ์„ ์˜๋ฏธํ•œ๋‹ค. ์ผ๋ฐ˜์ ์œผ๋กœ ์ธ๊ณต์ ์ธ ๊ตฌ์กฐ๋ฌผ์ด๋‚˜, ์‹์ƒ์ด ์—†๋Š” ๋‚˜์ง€(bare soil)์—์„œ ๋†’์€ ๊ฐ’์„ ๋ณด์ž„์„ ์•Œ ์ˆ˜ ์žˆ์œผ๋ฉฐ, ๋ฐ˜๋ฉด ์‹์ƒ์ด ์žˆ๋Š” ํ”ฝ์…€์€ ์ƒ๋Œ€์ ์œผ๋กœ ๋‚ฎ์€ ๊ฐ’์„ ๋ณด์˜€๋‹ค. ์ถ”์ •๋œ ๊ฒฐ๊ณผ๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ์‹œ๊ฐ„ ๋…๋ฆฝ์  ๊ธด๋ฐ€๋„๋ฅผ ์ถ”์ •ํ•˜์˜€์œผ๋‚˜, ์ด ๋•Œ ๋ฏธ์ง€์ˆ˜๊ฐ€ ๊ด€์ธก ๊ฐ’์˜ ๊ฐœ์ˆ˜๋ณด๋‹ค ๋งŽ์œผ๋ฏ€๋กœ ํŒŒ๋ผ๋ฏธํ„ฐ ์ถ”์ •์— ๋ถˆํ™•์‹ค์„ฑ์ด ์กด์žฌํ•œ๋‹ค. ๊ทธ๋Ÿฌ๋ฏ€๋กœ ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์ง€ํ‘œ์™€ ์ฒด์ ์—์„œ์˜ ์‹œ๊ฐ„ ์ข…์†์  ๊ธด๋ฐ€๋„์˜ ๋น„๋ฅผ ์ด์šฉํ•˜์—ฌ ๊ฐ ํ”ฝ์…€ ๋ฐ ๊ฐ ์‹œ๊ฐ„์ฐจ์ด๋ฅผ ๊ฐ–๋Š” ๊ธด๋ฐ€๋„์—์„œ ์ฒด์ ๊ณผ ์ง€ํ‘œ์˜ ์‹œ๊ฐ„ ๋น„์ƒ๊ด€์„ฑ ์ค‘ ์šฐ์„ธํ•œ ํ˜„์ƒ์„ ํƒ์ง€ํ•˜์—ฌ ์šฐ์„ธํ•˜์ง€ ์•Š์€ ํ˜„์ƒ์„ ๋ฌด์‹œํ•  ์ˆ˜ ์žˆ๋‹ค๊ณ  ๊ฐ€์ •ํ•˜์˜€๋‹ค. ์ฆ‰, ๋งŒ์•ฝ ์ง€ํ‘œ์˜ ์‹œ๊ฐ„ ์ข…์†์  ๊ธด๋ฐ€๋„๊ฐ€ ์ฒด์ ์˜ ์‹œ๊ฐ„ ์ข…์†์  ๊ธด๋ฐ€๋„๋ณด๋‹ค ๊ทธ ํšจ๊ณผ๊ฐ€ ํฌ๋‹ค๋ฉด, ์‹œ๊ฐ„ ๋…๋ฆฝ์  ๊ธด๋ฐ€๋„๊ฐ€ ์ฃผ๋กœ ์ง€ํ‘œ๋กœ๋ถ€ํ„ฐ ๊ธฐ์ธ๋œ๋‹ค๊ณ  ๊ฐ€์ •ํ•˜๋Š” ๊ฒƒ์ด๋‹ค. ์ผ๋ฐ˜์ ์œผ๋กœ ์‹์ƒ์˜ ๊ธด๋ฐ€๋„๋Š” ์ง€ํ‘œ์˜ ๊ธด๋ฐ€๋„์™€ ์ฒด์ ์˜ ๊ธด๋ฐ€๋„์˜ ์˜ํ–ฅ์ด ๋ณตํ•ฉ์ ์œผ๋กœ ์ž‘์šฉํ•˜์—ฌ ๊ฒฐ์ •๋œ๋‹ค. ์ด ๋•Œ ์ฒด์ ์˜ ๊ธด๋ฐ€๋„์˜ ๋ฐ”๋žŒ์— ์˜ํ•˜์—ฌ์„œ๋„ ์‰ฝ๊ฒŒ ๋ณ€ํ•˜๊ธฐ ๋•Œ๋ฌธ์— ์‹œ๊ฐ„์ด ์ง€๋‚จ์— ๋”ฐ๋ผ ๊ทธ ์˜ํ–ฅ์ด ๊ฑฐ์˜ ๋ฌด์‹œํ•  ์ˆ˜ ์žˆ๊ฒŒ ๋œ๋‹ค. ๊ทธ๋Ÿฌ๋ฏ€๋กœ ์‹œ๊ฐ„ ์ฐจ์ด๊ฐ€ ์งง์„ ๊ฒฝ์šฐ ์‹์ƒ์ด ๊ธด๋ฐ€๋„์— ์ฃผ๋„์ ์œผ๋กœ ์˜ํ–ฅ์„ ์ค„ ์ˆ˜ ์žˆ์ง€๋งŒ, ์‹œ๊ฐ„ ์ฐจ์ด๊ฐ€ ๊ธด ๊ฒฝ์šฐ ์ง€ํ‘œ๊ฐ€ ์šฐ์„ธํ•˜๊ฒŒ ๊ธด๋ฐ€๋„์— ์˜ํ–ฅ์„ ์ค€๋‹ค. ์ด์™€ ๊ฐ™์€ ๊ฐ€์ •์„ ํ†ตํ•˜์—ฌ ์‹œ๊ฐ„ ๋…๋ฆฝ์  ๊ธด๋ฐ€๋„๋ฅผ ์ถ”์ถœํ•˜์˜€๋‹ค. ๊ฐ ํ”ฝ์…€์—์„œ ๊ด€์ฐฐ๋˜๋Š” ๊ธด๋ฐ€๋„์˜ ํ˜„์ƒ์„ ํ†ต๊ณ„์ ์œผ๋กœ ๋ถ„์„ํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ์ž์—ฐ ์žฌํ•ด๊ฐ€ ํฌํ•จ๋˜์ง€ ์•Š์€ ์ž๋ฃŒ์˜ ์‹œ๊ฐ„ ์ข…์†์  ํŒŒ๋ผ๋ฏธํ„ฐ์˜ ํžˆ์Šคํ† ๊ทธ๋žจ์„ ์ œ์ž‘ํ•˜์˜€๊ณ , ์ด๋ฅผ ๊ธฐ๋ฐ˜์˜ ์ž์—ฐ ์žฌํ•ด๊ฐ€ ๊ธฐ์กด์— ๋ฐœ์ƒํ•˜์˜€๋˜ ์ž์—ฐ ํ˜„์ƒ์ด ๊ฐ€๋Šฅ์„ฑ์„ ๊ณ„์‚ฐํ•˜์˜€๋‹ค. ๋ฐ˜๋Œ€๋กœ ์ด ์ˆ˜์น˜๋Š” ์ž์—ฐ ํ˜„์ƒ์ด ์•„๋‹ ํ™•๋ฅ ์„ ์˜๋ฏธํ•˜๊ธฐ๋„ ํ•œ๋‹ค. ๊ฒฐ๋ก ์ ์œผ๋กœ ALOS ์ž๋ฃŒ๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ํ™”์‚ฐ์žฌ๊ฐ€ ์Œ“์—ฌ์žˆ์„ ํ™•๋ฅ ๋„๋ฅผ ๊ณ„์‚ฐํ•˜์˜€๋‹ค. ๊ฒฐ๊ณผ์˜ ๊ฒ€์ฆ์€ ์‹ค์ œ ํ˜„์žฅ ์กฐ์‚ฌ๋ฅผ ํ†ตํ•˜์—ฌ ํš๋“๋œ ํ™”์‚ฐ์žฌ์˜ ๋‘๊ป˜์™€ ์˜์—ญ ๋ฐ€๋„ (area density)์™€์˜ ๋น„๊ต๋ฅผ ํ†ตํ•˜์—ฌ ์ง„ํ–‰๋˜์—ˆ๋‹ค. ๊ฒ€์ฆ ๊ฒฐ๊ณผ๋Š” ๋‘๊ป˜๋กœ ์•ฝ 5 cm ์ด์ƒ, ์˜์—ญ ๋ฐ€๋„๋กœ ์•ฝ 10 kg/m2 ์ด์ƒ์˜ ํ™”์‚ฐ์žฌ๊ฐ€ ์Œ“์ธ ์ง€์—ญ์—์„œ ์ƒ๊ด€์„ฑ์„ ๋ณด์ž„์„ ํ™•์ธํ•˜์˜€์œผ๋ฉฐ, ์ด๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ์„ฑ๊ณต์ ์œผ๋กœ ์žฌํ•ด์— ๋Œ€ํ•œ ๋ณ€ํ™”๋ฅผ ํƒ์ง€ํ•˜์˜€์Œ์„ ์•Œ ์ˆ˜ ์žˆ์—ˆ๋‹ค. 4์žฅ์—์„œ๋Š” ๊ธด๋ฐ€๋„ ๋ชจ๋ธ์„ ์ด์šฉํ•˜์—ฌ ๋‹ค์ค‘ ์‹œ๊ธฐ์˜ ๋‹ค์ค‘ ํŽธํŒŒ SAR ์˜์ƒ์„ ํ™œ์šฉํ•˜์—ฌ ์ž์—ฐ ์žฌํ•ด ํƒ์ง€ ์•Œ๊ณ ๋ฆฌ์ฆ˜์— ์ ์šฉ๋˜์—ˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋ฅผ ์œ„ํ•˜์—ฌ 2009๋…„๋ถ€ํ„ฐ 2015๋…„๊นŒ์ง€์˜ 15์žฅ์˜ UAVSAR ์ž๋ฃŒ๊ฐ€ ํ™œ์šฉ๋˜์—ˆ์œผ๋ฉฐ, ๋ฏธ๊ตญ ์บ˜๋ฆฌํฌ๋‹ˆ์•„ ์ฃผ์—์„œ ๋ฐœ์ƒํ•œ 2015๋…„์˜ ์‚ฐ๋ถˆ ์ค‘ ํ•˜๋‚˜์ธ Lake fire์— ๋Œ€ํ•˜์—ฌ ์—ฐ๊ตฌ๊ฐ€ ์ง„ํ–‰๋˜์—ˆ๋‹ค. ๊ธด๋ฐ€๋„ ์˜์ƒ์—์„œ ์‚ฐ๋ถˆ์— ์˜ํ•œ ๊ธด๋ฐ€๋„ ๊ฐ์†Œ ํ˜„์ƒ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ์—ˆ์ง€๋งŒ, ์‹์ƒ ์ง€์—ญ์˜ ์ž์—ฐ ํ˜„์ƒ์— ์˜ํ•œ ๊ธด๋ฐ€๋„ ๊ฐ์†Œ ํ˜„์ƒ๊ณผ ๋ณตํ•ฉ์ ์œผ๋กœ ๋ฐœ์ƒํ•˜์˜€๊ธฐ ๋•Œ๋ฌธ์— ํ•ด์„์— ์–ด๋ ค์›€์ด ์žˆ์—ˆ๋‹ค. ์˜์ƒ์˜ ์ง„ํญ ์˜์ƒ์„ ์ด์šฉํ•œ ์ž์—ฐ ์žฌํ•ด ํƒ์ง€์—๋„ ์‚ฐ๋ถˆ ํƒ์ง€ํ•  ๋งŒํผ ๋ฏผ๊ฐ๋„๊ฐ€ ์ถฉ๋ถ„ํ•˜์ง€ ์•Š์•˜๋‹ค. 3์žฅ๊ณผ ๋งˆ์ฐฌ๊ฐ€์ง€๋กœ ๋ณธ ์—ฐ๊ตฌ ์ง€์—ญ์—์„œ ๊ธด๋ฐ€๋„๋‚˜ ์ง„ํญ๋งŒ์„ ์‚ฌ์šฉํ•ด์„œ๋Š” ์ •ํ™•ํ•œ ํ”ผํ•ด ์ง€๋„๋ฅผ ๋งŒ๋“ค๊ธฐ ์–ด๋ ค์› ์œผ๋ฉฐ, ๊ทธ๋Ÿฌ๋ฏ€๋กœ ๊ธด๋ฐ€๋„ ๋ชจ๋ธ์„ ์ ์šฉํ•œ ํ”ผํ•ด ํƒ์ง€ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ ์šฉํ•  ํ•„์š”์„ฑ์ด ์žˆ์—ˆ๋‹ค. 3์žฅ์—์„œ ์ œ์•ˆ๋œ ๋ชจ๋ธ ํ•ด์„ ๋ฐฉ๋ฒ•๊ณผ๋Š” ์ฐจ์ด์ ์ด ์žˆ๋Š”๋ฐ, ๊ทธ๊ฒƒ์ธ ๋ณธ ์—ฐ๊ตฌ์—์„œ ์‚ฌ์šฉ๋˜๋Š” UAVSAR ์ž๋ฃŒ๊ฐ€ ๋‹ค์ค‘ ํŽธํŒŒ๋ฅผ ๊ฐ€์ง€๊ณ  ์žˆ์œผ๋ฉฐ, ๊ณต๊ฐ„ ๊ธฐ์„  ๊ฑฐ๋ฆฌ๊ฐ€ ๊ฑฐ์˜ 0์— ๊ฐ€๊น๋‹ค๋Š” ํŠน์ง•์ด ์žˆ๊ธฐ ๋•Œ๋ฌธ์ด๋‹ค. ๋‹จ์ผ ํŽธํŒŒ ์ž๋ฃŒ์—์„œ๋Š” ๋งค๊ฐœ ๋ณ€์ˆ˜์˜ ๊ฐ’์ด ๊ด€์ธก๊ฐ’๋ณด๋‹ค ๋งŽ์•˜์ง€๋งŒ, ๋‹ค์ค‘ ํŽธํŒŒ์˜ ๊ฒฝ์šฐ ๊ด€์ธก๊ฐ’์ด ๋” ๋งŽ๋‹ค. ๊ทธ๋Ÿฌ๋ฏ€๋กœ ๋ชจ๋ธ ํŒŒ๋ผ๋ฏธํ„ฐ ์ถ”์ •์— ํ•„์š”ํ–ˆ๋˜ ๊ฐ€์ •์„ ์ค„์ผ ์ˆ˜ ์žˆ๋‹ค๋Š” ์žฅ์ ์ด ์žˆ๋‹ค. ๋˜ํ•œ ๊ณต๊ฐ„ ๊ธฐ์„ ๊ฑฐ๋ฆฌ๊ฐ€ ๊ฑฐ์˜ 0์— ๊ฐ€๊น๋‹ค๋Š” ๊ฒƒ๋„ ์ฒด์  ๋น„์ƒ๊ด€์„ฑ์„ ๋ฌด์‹œํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ๊ฒƒ์„ ์˜๋ฏธํ•œ๋‹ค. ๊ทธ๋Ÿฌ๋ฏ€๋กœ ๊ด€์ธก๋œ ๊ธด๋ฐ€๋„๋Š” ๊ฑฐ์˜ ์‹œ๊ฐ„ ๋น„์ƒ๊ด€์„ฑ๊ณผ ๊ด€๋ จ ์žˆ๋‹ค๊ณ  ์ƒ๊ฐํ•  ์ˆ˜ ์žˆ๋‹ค. ๋ชจ๋ธ ํŒŒ๋ผ๋ฏธํ„ฐ๋ฅผ ์ถ”์ถœํ•˜๊ธฐ ์œ„ํ•œ ๋ฐฉ๋ฒ•์€ ํฌ๊ฒŒ 3๊ฐ€์ง€๋กœ ๊ตฌ์„ฑ๋˜์—ˆ๋‹ค. ์ฒซ ๋ฒˆ์งธ๋กœ๋Š” ์ง€ํ‘œ์™€ ์ฒด์ ์— ๋Œ€ํ•œ ๊ธด๋ฐ€๋„ ์˜ํ–ฅ์„ ๋ถ„๋ฆฌํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ์šฐ์„ ์ ์œผ๋กœ ๊ธด๋ฐ€๋„ ์ตœ์ ํ™” ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ ์šฉํ•˜์˜€๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๋‹ค์ค‘ ์‹œ๊ธฐ ์˜์ƒ๋งˆ๋‹ค ๋‹ค๋ฅธ ์ตœ์ ํ™” ๋ฒกํ„ฐ๋ฅผ ์ƒ์ •ํ•˜๋Š” MSM ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ ์šฉํ•˜์˜€๋‹ค. ์ด ๊ณผ์ •์„ ํ†ตํ•˜์—ฌ ๊ด€์ธกํ•  ์ˆ˜ ์žˆ๋Š” ๊ธด๋ฐ€๋„๊ฐ€ ์ตœ๋Œ€์น˜๊ฐ€ ๋˜๊ฒŒ ๋งŒ๋“œ๋Š” ํŽธํŒŒ์™€ ๊ทธ์™€ ์ˆ˜์งํ•˜๋Š” ํŽธํŒŒ๋ฅผ ์ฐพ์„ ์ˆ˜ ์žˆ์œผ๋ฉฐ, ๋ชจ๋ธ ํ•ด์„๊ณผ ์—ฐ๊ด€์‹œ์ผฐ์„ ๋•Œ ์ตœ๋Œ€์น˜๊ฐ€ ๋˜๋Š” ๊ธด๋ฐ€๋„๋Š” ์ง€ํ‘œ์˜ ๋ณ€ํ™”์—, ์ตœ์†Œํ™”๋˜๋Š” ๊ธด๋ฐ€๋„๋Š” ์ฒด์ ์˜ ๋ณ€ํ™”์™€ ๊ด€๋ จ๋˜์–ด ์žˆ๋‹ค๊ณ  ํ•ด์„ํ•  ์ˆ˜ ์žˆ๋‹ค. ๋‘ ๋ฒˆ์งธ ๋‹จ๊ณ„์—์„œ๋Š” ์‹œ๊ฐ„ ์ข…์†์  ๊ธด๋ฐ€๋„์— ํ•ด๋‹นํ•˜๋Š” ๋ณ€์ˆ˜์ธ ํŠน์ง•์  ์‹œ๊ฐ„ ์ƒ์ˆ˜๋ฅผ ์ถ”์ถœํ•˜์˜€์œผ๋ฉฐ, ์ง€ํ‘œ๋Œ€ ์ฒด์ ๋น„ ์—ญ์‹œ ๊ณ„์‚ฐํ•˜์˜€๋‹ค. ๋‹จ์ผ ํŽธํŒŒ ์ถ”์ • ๋ฐฉ๋ฒ•๊ณผ ๋‹ค๋ฅด๊ฒŒ ๋‹ค์ค‘ ํŽธํŒŒ ์˜์ƒ์—์„œ๋Š” ๋ชจ๋“  ํŽธํŒŒ์˜ ๊ธด๋ฐ€๋„๋ฅผ ์ด์šฉํ•˜์—ฌ ์ฒด์ ๊ณผ ์ง€ํ‘œ์—์„œ์˜ ์‹œ๊ฐ„ ์ข…์†์  ๊ธด๋ฐ€๋„๋ฅผ ์ถ”์ •ํ•œ๋‹ค. ์„ธ๋ฒˆ์งธ ๋‹จ๊ณ„์—์„œ๋Š” ์ฒด์ ๊ณผ ์ง€ํ‘œ์—์„œ์˜ ์‹œ๊ฐ„ ๋…๋ฆฝ์  ๊ธด๋ฐ€๋„๋ฅผ ๋™์‹œ์— ์ถ”์ •ํ•˜๋ฉฐ 3์žฅ๊ณผ๋Š” ๋‹ค๋ฅธ ๊ฒƒ์€ ์ด ๊ณผ์ •์—์„œ ๊ฐ€์ •์ด ํ•„์š”ํ•˜์ง€ ์•Š๋‹ค๋Š” ๊ฒƒ์ด๋‹ค. ๋ณธ ๊ณผ์ •์„ ํ†ตํ•˜์—ฌ ์ถ”์ •๋œ ํŒŒ๋ผ๋ฏธํ„ฐ ์ค‘ ์‹œ๊ฐ„ ๋…๋ฆฝ์  ๊ธด๋ฐ€๋„๋Š” ์‹œ๊ฐ„ ์ข…์†์  ๊ธด๋ฐ€๋„๋กœ๋ถ€ํ„ฐ ์„ค๋ช…๋˜์ง€ ์•Š๋Š” ๋ถ€๋ถ„์„ ์ถ”๊ฐ€์ ์œผ๋กœ ์„ค๋ช…ํ•˜๋Š” ํŒŒ๋ผ๋ฏธํ„ฐ๋กœ์จ ๊ฐ‘์ž‘์Šค๋Ÿฝ๊ฒŒ ์ผ์–ด๋‚˜๋Š” ๋ณ€ํ™”๋ฅผ ์˜๋ฏธํ•œ๋‹ค. ๊ทธ๋Ÿฌ๋ฏ€๋กœ ์ด๋ฅผ ์ด์šฉํ•˜์—ฌ ๊ฐ ํ”ฝ์…€์—์„œ ๊ณผ๊ฑฐ ๋™์•ˆ ๋ฐœ์ƒํ•˜์˜€๋˜ ์ž์—ฐ ํ˜„์ƒ์ด ๊ธด๋ฐ€๋„์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์„ ํŒŒ์•…ํ•  ์ˆ˜ ์žˆ์œผ๋ฉฐ, ์‚ฐ๋ถˆ์€ ๋น„๊ต์  ๊ฐ•ํ•œ ๊ธด๋ฐ€๋„ ๊ฐ์†Œ๋ฅผ ๋ฐœ์ƒ์‹œํ‚ค๊ธฐ ๋•Œ๋ฌธ์— ํ†ต๊ณ„์ ์ธ ์ ‘๊ทผ์„ ํ†ตํ•˜์—ฌ ํ™•๋ฅ ์ ์ธ ํ”ผํ•ด ๊ฐ€๋Šฅ์„ฑ์„ ๋ถ„์„ํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ์‚ฐ๋ถˆ์˜ ๊ฒฝ๊ณ„ ๋ถ€๋ถ„์˜ ์ž๋ฃŒ์™€์˜ ์ƒ๋Œ€์ ์ธ ๋น„๊ต๋ฅผ ํ†ตํ•œ ๊ฒ€์ฆ ๊ฒฐ๊ณผ์„ ํ†ตํ•˜์—ฌ ๊ธด๋ฐ€๋„๋งŒ์„ ์ด์šฉํ•˜์—ฌ ํ”ผํ•ด ์ง€์—ญ์„ ์ถ”์ •ํ•˜๋Š” ๋ฐฉ๋ฒ•๋ณด๋‹ค ์˜คํƒ์ง€๋ฅ ์„ ์ค„์ผ ์ˆ˜ ์žˆ๋Š” ๊ฒƒ์„ ์•Œ ์ˆ˜ ์žˆ์—ˆ๋‹ค. 4์žฅ์—์„œ ์‚ฌ์šฉ๋œ ๋ชจ๋ธ ํŒŒ๋ผ๋ฏธํ„ฐ ์ถ”์ • ๊ฒฐ๊ณผ์˜ ๊ฒ€์ฆ์„ ์œ„ํ•˜์—ฌ ์ด์ „์˜ ๊ฒ€์ฆ์ด ์ง„ํ–‰๋˜์–ด ์™”๋˜ RMoG ๋ชจ๋ธ๊ณผ ์ƒ๋Œ€ ๋น„๊ต๋ฅผ ์ง„ํ–‰ํ•˜์˜€๋‹ค. RMoG์˜ ์ฒด์ ๊ณผ ์ง€ํ‘œ ๋ถ€๋ถ„์˜ ์‹œ๊ฐ„ ๋น„์ƒ๊ด€์„ฑ ํ•จ์ˆ˜๋Š” ๋ณธ ์—ฐ๊ตฌ์—์„œ ์‚ฌ์šฉ๋œ ๋ชจ๋ธ์˜ ์‹œ๊ฐ„ ์ข…์†์  ๊ธด๋ฐ€๋„์™€ ์‹œ๊ฐ„ ๋…๋ฆฝ์  ๊ธด๋ฐ€๋„์˜ ๊ณฑ์œผ๋กœ ํ‘œํ˜„๋  ์ˆ˜ ์žˆ๋‹ค. ๋น„๊ตํ•œ ๊ฒฐ๊ณผ๋Š” ๋†’์€ ์ƒ๊ด€์„ฑ์„ ๋ณด์ด๋Š” ๊ฒƒ์œผ๋กœ ํ™•์ธ๋˜์—ˆ๋‹ค. ๋˜ํ•œ ๋‹จ์ผ ํŽธํŒŒ์™€ ๋‹ค์ค‘ ํŽธํŒŒ๋ฅผ ์‚ฌ์šฉํ•œ ๋ชจ๋ธ ํŒŒ๋ผ๋ฏธํ„ฐ ์ถ”์ • ๊ฒฐ๊ณผ์™€ ์žฌํ•ด ํƒ์ง€ ๊ฒฐ๊ณผ๋„ ๋น„๊ตํ•˜์˜€๋‹ค. ๋ชจ๋ธ ํŒŒ๋ผ๋ฏธํ„ฐ ์ถ”์ •์˜ ๊ฒฝ์šฐ, ๋‹จ์ผ ํŽธํŒŒ์—์„œ ์ถ”์ •๋œ ๊ฒฐ๊ณผ๊ฐ€ ๋‹ค์†Œ ์ž‘์Œ์ด ํ™•์ธ๋˜์—ˆ์œผ๋ฉฐ, ์ด๊ฒƒ์€ ๋‹จ์ผ ํŽธํŒŒ(HH)๊ฐ€ ์ง€ํ‘œ์™€ ์ฒด์  ์‚ฌ์ด์˜ ์‚ฐ๋ž€ ์ค‘์‹ฌ์—์„œ ๊ธฐ๋ก๋œ ๊ฒƒ์œผ๋กœ ๊ทธ ์›์ธ์„ ์ถ”์ •ํ•ด๋ณผ ์ˆ˜ ์žˆ๋‹ค. ๊ทธ๋Ÿผ์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ  ํ”ผํ•ดํƒ์ง€ ๋ฐฉ๋ฒ•์—์„œ์˜ ์ •ํ™•๋„๋Š” ๋‹ค์ค‘ ํŽธํŒŒ๋ฅผ ์‚ฌ์šฉํ•˜๋Š” ๋ฐฉ๋ฒ•์— ์šฐ์„ธํ•˜๊ฒŒ ๋‚˜ํƒ€๋‚ฌ์ง€๋งŒ, ๊ฑฐ์˜ ์œ ์‚ฌํ•œ ์ •๋„์˜ ์ •ํ™•๋„๋ฅผ ๊ฐ€์ง€๊ณ  ์žˆ์Œ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ ์ œ์•ˆ๋œ ํ”ผํ•ด ํƒ์ง€ ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ์ž์—ฐ ํ˜„์ƒ์—์„œ ๋น„๋กฏ๋˜๋Š” ๊ธด๋ฐ€๋„ ๊ฐ์†Œ ํ˜„์ƒ์„ ๋ถ„์„ํ•˜์—ฌ ์ž์—ฐ ์žฌํ•ด๋กœ๋ถ€ํ„ฐ ๋ฐœ์ƒํ•˜๋Š” ํ˜„์ƒ์„ ๊ตฌ๋ณ„ํ•˜์—ฌ ํ”ผํ•ด๋กœ ๊ทœ์ •ํ•˜์˜€๋‹ค. ์ด๋ฅผ ํ†ตํ•ด, ๊ธฐ์กด์˜ ์•Œ๊ณ ๋ฆฌ์ฆ˜ ๋ณด๋‹ค ์ •ํ™•๋„๋ฅผ ํ–ฅ์ƒ์‹œํ‚ฌ ์ˆ˜ ์žˆ์—ˆ๋‹ค. ๋˜ํ•œ ๋‹ค์ค‘ ํŽธํŒŒ ๊ฐ„์„ญ๊ณ„ SAR ์ž๋ฃŒ๋ฅผ ์‚ฌ์šฉํ•จ์œผ๋กœ์จ, ๋‹ค์ค‘ ํŽธํŒŒ์— ๊ธฐ๋ก๋˜์–ด ์žˆ๋Š” ๋‹ค๋ฅธ ์‚ฐ๋ž€ ์ค‘์‹ฌ์—์„œ์˜ ๋ณ€ํ™”๋ฅผ ์ด์šฉํ•˜์—ฌ ์ฒด์  ๋ฐ ์ง€ํ‘œ์—์„œ์˜ ๋ณ€ํ™”๋ฅผ ๋…๋ฆฝ์ ์œผ๋กœ ํ‰๊ฐ€ํ•˜์—ฌ ํ”ผํ•ด๋ฅผ ํƒ์ง€ํ•˜์˜€๋‹ค. ์ด์™€ ๊ฐ™์€ ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ๋‹ค์ˆ˜์˜ ์ž์—ฐ ์žฌํ•ด์— ์ ์šฉ๋  ์ˆ˜ ์žˆ์œผ๋ฉฐ, ๊ฐ ํ”ฝ์…€์˜ ๊ธด๋ฐ€๋„ ํŠน์„ฑ์„ ๋ฐ˜์˜ํ•˜๊ธฐ ๋•Œ๋ฌธ์— ๋‹ค์–‘ํ•œ ์ง€ํ‘œ ํƒ€์ž…์— ์ ์šฉ๋  ์ˆ˜ ์žˆ์„ ๊ฒƒ์œผ๋กœ ๊ธฐ๋Œ€๋œ๋‹ค. ๋˜ํ•œ ๋ฌผ๋ฆฌ์ ์ธ ํ•ด์„์„ ๋ณ‘ํ•ฉํ•˜์—ฌ ํ”ผํ•ด์˜ ์‹ฌ๊ฐ๋„๋ฅผ ์ •๋Ÿ‰ํ™” ํ•  ์ˆ˜ ์žˆ์€ ๊ฐ€๋Šฅ์„ฑ ์—ญ์‹œ ์กด์žฌ ํ•˜๋ฉฐ, ํ–ฅํ›„ ๋ฐœ์‚ฌ๋  ์ธ๊ณต์œ„์„ฑ์˜ ๋ฏธ์…˜์—์„œ๋„ ์ ์šฉ๋  ์ˆ˜ ์žˆ๊ธฐ ๋•Œ๋ฌธ์— ๋ณธ ์—ฐ๊ตฌ์˜ ์˜์˜๊ฐ€ ํฌ๋‹ค๊ณ  ํŒ๋‹จํ•  ์ˆ˜ ์žˆ๋‹ค.For rapid response and efficient recovery, the accurate assessment of damaged area caused by the natural disaster is essential. SAR system has been known as a powerful and effective tool for estimating damaged area due to its imaging capability at night and cloudy days. One of the damage assessment methods is based on interferometric coherence generated from two or more SAR images, namely coherent change detection. The interferometric coherence is a very sensitive detector to subtle changes induced by dielectric properties and positional disturbance of scatterers. However, the conventional approaches using the interferometric coherence have several limitations in understanding the damage mechanism caused by natural disasters and providing the accurate spatial information. These limitations come from the complicated mechanism determining the coherence. A number of sources including the sensor geometry, radar parameters, and surface conditions can induce the decorrelation. In particular, the interpretation complexity of the interferometric coherence is severe over the vegetated area, due to the volumetric decorrelation and temporal decorrelation. It is a remaining problem that the decorrelation caused by the natural phenomena such as the wind, rain, and snow can come along the decorrelation caused by natural disaster. Therefore, a new accurate approach needs to be designed in order to interpret the decorrelation sources and discriminate the effect of natural disaster from that of natural phenomena. This research starts from the development of the temporal decorrelation model to interpret the interferometric coherence observed in multi-temporal SAR data. Then, the coherence model is extended to be applied to the damage mapping algorithm for single- and fully-polarimetric SAR data for detecting the damaged area caused by volcanic ash and wildfire. The coherence model is designed so that it explains the coherence behavior observed in the multi-temporal SAR data. The noticeable characteristic is that the interferometric coherence tends to decrease as the time-interval increases. Also, the coherence for multi-layer is determined by the different contributions of each layer. For example, the volume and ground layer can affect the total coherence observed in the forest area. In order to reflect the realistic condition and physically interpret the coherence, the coherence model proposed in this research includes several decorrelation sources such as temporally correlated dielectric changes, temporally uncorrelated dielectric changes and the motions in the two layersi.e. ground and volume layer. According to the proposed model, the coherent behavior of each layer is explained by exponentially decreasing coherence (temporally-correlated coherence), and the difference between the observed coherence and the temporally-correlated coherence is interpreted as the temporally-uncorrelated coherence. The ground-to-volume ratio plays an important role to determine the contributions of temporal decorrelations in ground and volume layer. Suggested model is applied into the coherent change detection for multi-temporal and single-polarized SAR data. The method is evaluated for detection of volcanic ash emitted from Kirishima volcano in 2011 using ALOS PALSAR data. The criterion of the spatial baseline is calculated based on the Random Volume over Ground model to minimize the volumetric decorrelation. The model parameters are extracted under the several assumptions, and then the historical coherence behavior is analyzed using kernel density estimation method. By comparing the changes of model parameters between the reference pairs and event pairs, the probability of surface changes caused by volcanic ash is defined. The in-situ data, which measure the depth and area density of volcanic ash, is compared with the calculated probability maps for determining the threshold and evaluating the performance. The correlation is found over the area where the depth of the volcanic ash is more than 5 cm and the area density is more than 10 kg/m2. The temporal decorrelation model is also used for change detection using multi-temporal and fully-polarimetric interferometric SAR data. By introducing polarimetric and interferometric SAR data, the assumptions used in the method for single-polarized SAR data are reduced and the changes of two layer can be estimated separately. The approach is applied to detect the burnt area caused by the Lake fire, in June 2015 using UAVSAR data. Even though, coherence analysis shows the loss of coherence due to the fire event, the temporal decorrelation caused by the natural changes is mixed with the signal of the event. In order to apply the coherence model and extract the model parameter, here, the three steps are proposedcoherence optimization, temporally-correlated coherence estimation, and temporally-uncorrelated coherence estimation. Then, the extracted model parameters are used for the damage assessment using the probability determination based on the history of natural phenomena. The final generated damage map shows higher performance than the damage mapping method using coherence only. Also, the comparison result with the RMoG model shows high agreement, which implies the extraction of the model parameters is reliable. One of the advantages of the proposed algorithm is that the more accurate delineation of damage area can be expected by isolating the decorrelation caused by the natural disaster from the effect of natural phenomena. Moreover, a distinguishable benefit can be obtained that the changes over ground and volume layers can be assessed separately by utilizing the multi-temporal full-polarimetric SAR data.Chapter 1. Introduction 1 1.1. Brief overview of SAR and its applications 1 1.2. Motivations 5 1.3. Purpose of Research 8 1.4. Outline 10 Chapter 2. Estimation of complex correlation and decorrelation sources 11 2.1. Estimation of complex correlation 11 2.2. Decorrelation sources 14 2.3. Derivation of coherence model assuming two layers for repeat-pass interferometry 35 Chapter 3. Damage mapping using temporal decorrelation model for single-polarized SAR data : A case study for volcanic ash 51 3.1. Description of study area 51 3.2. Data description 55 3.3. Extraction of temporal decorrelation parameters 61 3.4. Probability map generation 68 3.5. Mapping volcanic ash 73 3.6. Discussion 76 Chapter 4.Damage mapping using temporal decorrelation model for multi-temporal and fully-polarized SAR data 78 4.1. Description of Lake Fire and UAVSAR data 79 4.2. Brief analysis of SAR amplitude and interferometric coherence 82 4.3. Damage mapping algorithm using coherence model 89 4.4. Applicable conditions of damage mapping algorithm using coherence model 114 4. 5. Comparison of model inversion results and damage mapping algorithm results 120 4. 6. Discussion and conclusion 129 Chapter 5. Conclusions and Future Perspectives 132 Abstract in Korean 140 Bibliography 147Docto

    The SAR Handbook: Comprehensive Methodologies for Forest Monitoring and Biomass Estimation

    Get PDF
    This Synthetic Aperture Radar (SAR) handbook of applied methods for forest monitoring and biomass estimation has been developed by SERVIR in collaboration with SilvaCarbon to address pressing needs in the development of operational forest monitoring services. Despite the existence of SAR technology with all-weather capability for over 30 years, the applied use of this technology for operational purposes has proven difficult. This handbook seeks to provide understandable, easy-to-assimilate technical material to remote sensing specialists that may not have expertise on SAR but are interested in leveraging SAR technology in the forestry sector
    • โ€ฆ
    corecore