12 research outputs found

    Xbox one file system data storage: A forensic analysis

    Get PDF
    The purpose of this research was to answer the question, how does the file system of the Xbox One store data on its hard disk? This question is the main focus of the exploratory research and results sought. The research is focused on digital forensic investigators and experts. An out of the box Xbox One gaming console was used in the research. Three test cases were created as viable scenarios an investigator could come across in a search and seizure of evidence. The three test cases were then analyzed individually and cross analyzed with each other for differing digital artifacts. It was found that the Xbox One works off of a UEFI/GPT system with NTFS within each of the five partitions. MD5 and SHA1 hash checksums were used as to view altered, added, and removed files for both integrity checking and test case comparison

    Mobile Forensics – The File Format Handbook

    Get PDF
    This open access book summarizes knowledge about several file systems and file formats commonly used in mobile devices. In addition to the fundamental description of the formats, there are hints about the forensic value of possible artefacts, along with an outline of tools that can decode the relevant data. The book is organized into two distinct parts: Part I describes several different file systems that are commonly used in mobile devices. · APFS is the file system that is used in all modern Apple devices including iPhones, iPads, and even Apple Computers, like the MacBook series. · Ext4 is very common in Android devices and is the successor of the Ext2 and Ext3 file systems that were commonly used on Linux-based computers. · The Flash-Friendly File System (F2FS) is a Linux system designed explicitly for NAND Flash memory, common in removable storage devices and mobile devices, which Samsung Electronics developed in 2012. · The QNX6 file system is present in Smartphones delivered by Blackberry (e.g. devices that are using Blackberry 10) and modern vehicle infotainment systems that use QNX as their operating system. Part II describes five different file formats that are commonly used on mobile devices. · SQLite is nearly omnipresent in mobile devices with an overwhelming majority of all mobile applications storing their data in such databases. · The second leading file format in the mobile world are Property Lists, which are predominantly found on Apple devices. · Java Serialization is a popular technique for storing object states in the Java programming language. Mobile application (app) developers very often resort to this technique to make their application state persistent. · The Realm database format has emerged over recent years as a possible successor to the now ageing SQLite format and has begun to appear as part of some modern applications on mobile devices. · Protocol Buffers provide a format for taking compiled data and serializing it by turning it into bytes represented in decimal values, which is a technique commonly used in mobile devices. The aim of this book is to act as a knowledge base and reference guide for digital forensic practitioners who need knowledge about a specific file system or file format. It is also hoped to provide useful insight and knowledge for students or other aspiring professionals who want to work within the field of digital forensics. The book is written with the assumption that the reader will have some existing knowledge and understanding about computers, mobile devices, file systems and file formats

    Mobile Forensics – The File Format Handbook

    Get PDF
    This open access book summarizes knowledge about several file systems and file formats commonly used in mobile devices. In addition to the fundamental description of the formats, there are hints about the forensic value of possible artefacts, along with an outline of tools that can decode the relevant data. The book is organized into two distinct parts: Part I describes several different file systems that are commonly used in mobile devices. · APFS is the file system that is used in all modern Apple devices including iPhones, iPads, and even Apple Computers, like the MacBook series. · Ext4 is very common in Android devices and is the successor of the Ext2 and Ext3 file systems that were commonly used on Linux-based computers. · The Flash-Friendly File System (F2FS) is a Linux system designed explicitly for NAND Flash memory, common in removable storage devices and mobile devices, which Samsung Electronics developed in 2012. · The QNX6 file system is present in Smartphones delivered by Blackberry (e.g. devices that are using Blackberry 10) and modern vehicle infotainment systems that use QNX as their operating system. Part II describes five different file formats that are commonly used on mobile devices. · SQLite is nearly omnipresent in mobile devices with an overwhelming majority of all mobile applications storing their data in such databases. · The second leading file format in the mobile world are Property Lists, which are predominantly found on Apple devices. · Java Serialization is a popular technique for storing object states in the Java programming language. Mobile application (app) developers very often resort to this technique to make their application state persistent. · The Realm database format has emerged over recent years as a possible successor to the now ageing SQLite format and has begun to appear as part of some modern applications on mobile devices. · Protocol Buffers provide a format for taking compiled data and serializing it by turning it into bytes represented in decimal values, which is a technique commonly used in mobile devices. The aim of this book is to act as a knowledge base and reference guide for digital forensic practitioners who need knowledge about a specific file system or file format. It is also hoped to provide useful insight and knowledge for students or other aspiring professionals who want to work within the field of digital forensics. The book is written with the assumption that the reader will have some existing knowledge and understanding about computers, mobile devices, file systems and file formats

    Technical and legal perspectives on forensics scenario

    Get PDF
    The dissertation concerns digital forensic. The expression digital forensic (sometimes called digital forensic science) is the science that studies the identification, storage, protection, retrieval, documentation, use, and every other form of computer data processing in order to be evaluated in a legal trial. Digital forensic is a branch of forensic science. First of all, digital forensic represents the extension of theories, principles and procedures that are typical and important elements of the forensic science, computer science and new technologies. From this conceptual viewpoint, the logical consideration concerns the fact that the forensic science studies the legal value of specific events in order to contrive possible sources of evidence. The branches of forensic science are: physiological sciences, social sciences, forensic criminalistics and digital forensics. Moreover, digital forensic includes few categories relating to the investigation of various types of devices, media or artefacts. These categories are: - computer forensic: the aim is to explain the current state of a digital artefact; such as a computer system, storage medium or electronic document; - mobile device forensic: the aim is to recover digital evidence or data from mobile device, such as image, log call, log sms and so on; - network forensic: the aim is related to the monitoring and analysis of network traffic (local, WAN/Internet, UMTS, etc.) to detect intrusion more in general to find network evidence; - forensic data analysis: the aim is examine structured data to discover evidence usually related to financial crime; - database forensic: the aim is related to databases and their metadata. The origin and historical development of the discipline of study and research of digital forensic are closely related to progress in information and communication technology in the modern era. In parallel with the changes in society due to new technologies and, in particular, the advent of the computer and electronic networks, there has been a change in the mode of collection, management and analysis of evidence. Indeed, in addition to the more traditional, natural and physical elements, the procedures have included further evidence that although equally capable of identifying an occurrence, they are inextricably related to a computer or a computer network or electronic means. The birth of computer forensics can be traced back to 1984, when the FBI and other American investigative agencies have began to use software for the extraction and analysis of data on a personal computer. At the beginning of the 80s, the CART(Computer Analysis and Response Team) was created within the FBI, with the express purpose of seeking the so-called digital evidence. This term is used to denote all the information stored or transmitted in digital form that may have some probative value. While the term evidence, more precisely, constitutes the judicial nature of digital data, the term forensic emphasizes the procedural nature of matter, literally, "to be presented to the Court". Digital forensic have a huge variety of applications. The most common applications are related to crime or cybercrime. Cybercrime is a growing problem for government, business and private. - Government: security of the country (terrorism, espionage, etc.) or social problems (child pornography, child trafficking and so on). - Business: purely economic problems, for example industrial espionage. - Private: personal safety and possessions, for example phishing, identity theft. Often many techniques, used in digital forensics, are not formally defined and the relation between the technical procedure and the law is not frequently taken into consideration. From this conceptual perspective, the research work intends to define and optimize the procedures and methodologies of digital forensic in relation to Italian regulation, testing, analysing and defining the best practice, if they are not defined, concerning common software. The research questions are: 1. The problem of cybercrime is becoming increasingly significant for governments, businesses and citizens. - In relation to governments, cybercrime involves problems concerning national security, such as terrorism and espionage, and social questions, such as trafficking in children and child pornography. - In relation to businesses, cybercrime entails problems concerning mainly economic issues, such as industrial espionage. - In relation to citizens, cybercrime involves problems concerning personal security, such as identity thefts and fraud. 2. Many techniques, used within the digital forensic, are not formally defined. 3. The relation between procedures and legislation are not always applied and taken into consideratio

    Introductory Computer Forensics

    Get PDF
    INTERPOL (International Police) built cybercrime programs to keep up with emerging cyber threats, and aims to coordinate and assist international operations for ?ghting crimes involving computers. Although signi?cant international efforts are being made in dealing with cybercrime and cyber-terrorism, ?nding effective, cooperative, and collaborative ways to deal with complicated cases that span multiple jurisdictions has proven dif?cult in practic

    Technical and legal perspectives on forensics scenario

    Get PDF
    The dissertation concerns digital forensic. The expression digital forensic (sometimes called digital forensic science) is the science that studies the identification, storage, protection, retrieval, documentation, use, and every other form of computer data processing in order to be evaluated in a legal trial. Digital forensic is a branch of forensic science. First of all, digital forensic represents the extension of theories, principles and procedures that are typical and important elements of the forensic science, computer science and new technologies. From this conceptual viewpoint, the logical consideration concerns the fact that the forensic science studies the legal value of specific events in order to contrive possible sources of evidence. The branches of forensic science are: physiological sciences, social sciences, forensic criminalistics and digital forensics. Moreover, digital forensic includes few categories relating to the investigation of various types of devices, media or artefacts. These categories are: - computer forensic: the aim is to explain the current state of a digital artefact; such as a computer system, storage medium or electronic document; - mobile device forensic: the aim is to recover digital evidence or data from mobile device, such as image, log call, log sms and so on; - network forensic: the aim is related to the monitoring and analysis of network traffic (local, WAN/Internet, UMTS, etc.) to detect intrusion more in general to find network evidence; - forensic data analysis: the aim is examine structured data to discover evidence usually related to financial crime; - database forensic: the aim is related to databases and their metadata. The origin and historical development of the discipline of study and research of digital forensic are closely related to progress in information and communication technology in the modern era. In parallel with the changes in society due to new technologies and, in particular, the advent of the computer and electronic networks, there has been a change in the mode of collection, management and analysis of evidence. Indeed, in addition to the more traditional, natural and physical elements, the procedures have included further evidence that although equally capable of identifying an occurrence, they are inextricably related to a computer or a computer network or electronic means. The birth of computer forensics can be traced back to 1984, when the FBI and other American investigative agencies have began to use software for the extraction and analysis of data on a personal computer. At the beginning of the 80s, the CART(Computer Analysis and Response Team) was created within the FBI, with the express purpose of seeking the so-called digital evidence. This term is used to denote all the information stored or transmitted in digital form that may have some probative value. While the term evidence, more precisely, constitutes the judicial nature of digital data, the term forensic emphasizes the procedural nature of matter, literally, "to be presented to the Court". Digital forensic have a huge variety of applications. The most common applications are related to crime or cybercrime. Cybercrime is a growing problem for government, business and private. - Government: security of the country (terrorism, espionage, etc.) or social problems (child pornography, child trafficking and so on). - Business: purely economic problems, for example industrial espionage. - Private: personal safety and possessions, for example phishing, identity theft. Often many techniques, used in digital forensics, are not formally defined and the relation between the technical procedure and the law is not frequently taken into consideration. From this conceptual perspective, the research work intends to define and optimize the procedures and methodologies of digital forensic in relation to Italian regulation, testing, analysing and defining the best practice, if they are not defined, concerning common software. The research questions are: 1. The problem of cybercrime is becoming increasingly significant for governments, businesses and citizens. - In relation to governments, cybercrime involves problems concerning national security, such as terrorism and espionage, and social questions, such as trafficking in children and child pornography. - In relation to businesses, cybercrime entails problems concerning mainly economic issues, such as industrial espionage. - In relation to citizens, cybercrime involves problems concerning personal security, such as identity thefts and fraud. 2. Many techniques, used within the digital forensic, are not formally defined. 3. The relation between procedures and legislation are not always applied and taken into consideratio
    corecore