1,588 research outputs found

    HMM-based Offline Recognition of Handwritten Words Crossed Out with Different Kinds of Strokes

    Get PDF
    In this work, we investigate the recognition of words that have been crossed-out by the writers and are thus degraded. The degradation consists of one or more ink strokes that span the whole word length and simulate the signs that writers use to cross out the words. The simulated strokes are superimposed to the original clean word images. We considered two types of strokes: wave-trajectory strokes created with splines curves and line-trajectory strokes generated with the delta-lognormal model of rapid line movements. The experiments have been performed using a recognition system based on hidden Markov models and the results show that the performance decrease is moderate for single writer data and light strokes, but severe for multiple writer data

    Construction and evaluation of classifiers for forensic document analysis

    Full text link
    In this study we illustrate a statistical approach to questioned document examination. Specifically, we consider the construction of three classifiers that predict the writer of a sample document based on categorical data. To evaluate these classifiers, we use a data set with a large number of writers and a small number of writing samples per writer. Since the resulting classifiers were found to have near perfect accuracy using leave-one-out cross-validation, we propose a novel Bayesian-based cross-validation method for evaluating the classifiers.Comment: Published in at http://dx.doi.org/10.1214/10-AOAS379 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Deep Adaptive Learning for Writer Identification based on Single Handwritten Word Images

    Get PDF
    There are two types of information in each handwritten word image: explicit information which can be easily read or derived directly, such as lexical content or word length, and implicit attributes such as the author's identity. Whether features learned by a neural network for one task can be used for another task remains an open question. In this paper, we present a deep adaptive learning method for writer identification based on single-word images using multi-task learning. An auxiliary task is added to the training process to enforce the emergence of reusable features. Our proposed method transfers the benefits of the learned features of a convolutional neural network from an auxiliary task such as explicit content recognition to the main task of writer identification in a single procedure. Specifically, we propose a new adaptive convolutional layer to exploit the learned deep features. A multi-task neural network with one or several adaptive convolutional layers is trained end-to-end, to exploit robust generic features for a specific main task, i.e., writer identification. Three auxiliary tasks, corresponding to three explicit attributes of handwritten word images (lexical content, word length and character attributes), are evaluated. Experimental results on two benchmark datasets show that the proposed deep adaptive learning method can improve the performance of writer identification based on single-word images, compared to non-adaptive and simple linear-adaptive approaches.Comment: Under view of Pattern Recognitio

    Robust off-line text independent writer identification using bagged discrete cosine transform features

    Get PDF
    Efficient writer identification systems identify the authorship of an unknown sample of text with high confidence. This has made automatic writer identification a very important topic of research for forensic document analysis. In this paper, we propose a robust system for offline text independent writer identification using bagged discrete cosine transform (BDCT) descriptors. Universal codebooks are first used to generate multiple predictor models. A final decision is then obtained by using the majority voting rule from these predictor models. The BDCT approach allows for DCT features to be effectively exploited for robust hand writer identification. The proposed system has first been assessed on the original version of hand written documents of various datasets and results have shown comparable performance with state-of-the-art systems. Next, blurry and noisy documents of two different datasets have been considered through intensive experiments where the system has been shown to perform significantly better than its competitors. To the best of our knowledge this is the first work that addresses the robustness aspect in automatic hand writer identification. This is particularly suitable in digital forensics as the documents acquired by the analyst may not be in ideal conditions

    Handwritten Document Analysis for Automatic Writer Recognition

    Get PDF
    In this paper, we show that both the writer identification and the writer verification tasks can be carried out using local features such as graphemes extracted from the segmentation of cursive handwriting. We thus enlarge the scope of the possible use of these two tasks which have been, up to now, mainly evaluated on script handwritings. A textual based Information Retrieval model is used for the writer identification stage. This allows the use of a particular feature space based on feature frequencies. Image queries are handwritten documents projected in this feature space. The approach achieves 95% correct identification on the PSI_DataBase and 86% on the IAM_DataBase. Then writer hypothesis retrieved are analysed during a verification phase. We call upon a mutual information criterion to verify that two documents may have been produced by the same writer or not. Hypothesis testing is used for this purpose. The proposed method is first scaled on the PSI_DataBase then evaluated on the IAM_DataBase. On both databases, similar performance of nearly 96% correct verification is reported, thus making the approach general and very promising for large scale applications in the domain of handwritten document querying and writer verification

    Dissimilarity Gaussian Mixture Models for Efficient Offline Handwritten Text-Independent Identification using SIFT and RootSIFT Descriptors

    Get PDF
    Handwriting biometrics is the science of identifying the behavioural aspect of an individualā€™s writing style and exploiting it to develop automated writer identification and verification systems. This paper presents an efficient handwriting identification system which combines Scale Invariant Feature Transform (SIFT) and RootSIFT descriptors in a set of Gaussian mixture models (GMM). In particular, a new concept of similarity and dissimilarity Gaussian mixture models (SGMM and DGMM) is introduced. While a SGMM is constructed for every writer to describe the intra-class similarity that is exhibited between the handwritten texts of the same writer, a DGMM represents the contrast or dissimilarity that exists between the writerā€™s style on one hand and other different handwriting styles on the other hand. Furthermore, because the handwritten text is described by a number of key point descriptors where each descriptor generates a SGMM/DGMM score, a new weighted histogram method is proposed to derive the intermediate prediction score for each writerā€™s GMM. The idea of weighted histogram exploits the fact that handwritings from the same writer should exhibit more similar textual patterns than dissimilar ones, hence, by penalizing the bad scores with a cost function, the identification rate can be significantly enhanced. Our proposed system has been extensively assessed using six different public datasets (including three English, two Arabic and one hybrid language) and the results have shown the superiority of the proposed system over state-of-the-art techniques
    • ā€¦
    corecore