2,231 research outputs found

    Foreground object segmentation for moving camera sequences based on foreground-background probabilistic models and prior probability maps

    No full text
    International audienceThis paper deals with foreground object segmentation in the context of moving camera sequences. The method that we propose com-putes a foreground object segmentation in a MAP-MRF framework between foreground and background classes. We use region-based models to model the foreground object and the background region that surrounds the object. Moreover, the global background of the sequence is also included in the classification process by using pixel-wise color GMM. We compute the foreground segregation for each one of the frames by using a Bayesian classification and a graph-cut regularization between the classes, where the prior probability maps for both, foreground and background, are included in the for-mulation, thus using the cumulative knowledge of the object from the segmentation obtained in the previous frames. The results pre-sented in the paper show how the false positive and false negative detections are reduced, meanwhile the robustness of the system is improved thanks to the use of the prior probability maps in the clas-sification process

    Parametric region-based foreround segmentation in planar and multi-view sequences

    Get PDF
    Foreground segmentation in video sequences is an important area of the image processing that attracts great interest among the scientist community, since it makes possible the detection of the objects that appear in the sequences under analysis, and allows us to achieve a correct performance of high level applications which use foreground segmentation as an initial step. The current Ph.D. thesis entitled Parametric Region-Based Foreground Segmentation in Planar and Multi-View Sequences details, in the following pages, the research work carried out within this eld. In this investigation, we propose to use parametric probabilistic models at pixel-wise and region level in order to model the di erent classes that are involved in the classi cation process of the di erent regions of the image: foreground, background and, in some sequences, shadow. The development is presented in the following chapters as a generalization of the techniques proposed for objects segmentation in 2D planar sequences to 3D multi-view environment, where we establish a cooperative relationship between all the sensors that are recording the scene. Hence, di erent scenarios have been analyzed in this thesis in order to improve the foreground segmentation techniques: In the first part of this research, we present segmentation methods appropriate for 2D planar scenarios. We start dealing with foreground segmentation in static camera sequences, where a system that combines pixel-wise background model with region-based foreground and shadow models is proposed in a Bayesian classi cation framework. The research continues with the application of this method to moving camera scenarios, where the Bayesian framework is developed between foreground and background classes, both characterized with region-based models, in order to obtain a robust foreground segmentation for this kind of sequences. The second stage of the research is devoted to apply these 2D techniques to multi-view acquisition setups, where several cameras are recording the scene at the same time. At the beginning of this section, we propose a foreground segmentation system for sequences recorded by means of color and depth sensors, which combines di erent probabilistic models created for the background and foreground classes in each one of the views, by taking into account the reliability that each sensor presents. The investigation goes ahead by proposing foreground segregation methods for multi-view smart room scenarios. In these sections, we design two systems where foreground segmentation and 3D reconstruction are combined in order to improve the results of each process. The proposals end with the presentation of a multi-view segmentation system where a foreground probabilistic model is proposed in the 3D space to gather all the object information that appears in the views. The results presented in each one of the proposals show that the foreground segmentation and also the 3D reconstruction can be improved, in these scenarios, by using parametric probabilistic models for modeling the objects to segment, thus introducing the information of the object in a Bayesian classi cation framework.La segmentaci on de objetos de primer plano en secuencias de v deo es una importante area del procesado de imagen que despierta gran inter es por parte de la comunidad cient ca, ya que posibilita la detecci on de objetos que aparecen en las diferentes secuencias en an alisis, y permite el buen funcionamiento de aplicaciones de alto nivel que utilizan esta segmentaci on obtenida como par ametro de entrada. La presente tesis doctoral titulada Parametric Region-Based Foreground Segmentation in Planar and Multi-View Sequences detalla, en las p aginas que siguen, el trabajo de investigaci on desarrollado en este campo. En esta investigaci on se propone utilizar modelos probabil sticos param etricos a nivel de p xel y a nivel de regi on para modelar las diferentes clases que participan en la clasi caci on de las regiones de la imagen: primer plano, fondo y en seg un que secuencias, las regiones de sombra. El desarrollo se presenta en los cap tulos que siguen como una generalizaci on de t ecnicas propuestas para la segmentaci on de objetos en secuencias 2D mono-c amara, al entorno 3D multi-c amara, donde se establece la cooperaci on de los diferentes sensores que participan en la grabaci on de la escena. De esta manera, diferentes escenarios han sido estudiados con el objetivo de mejorar las t ecnicas de segmentaci on para cada uno de ellos: En la primera parte de la investigaci on, se presentan m etodos de segmentaci on para escenarios monoc amara. Concretamente, se comienza tratando la segmentaci on de primer plano para c amara est atica, donde se propone un sistema completo basado en la clasi caci on Bayesiana entre el modelo a nivel de p xel de nido para modelar el fondo, y los modelos a nivel de regi on creados para modelar los objetos de primer plano y la sombra que cada uno de ellos proyecta. La investigaci on prosigue con la aplicaci on de este m etodo a secuencias grabadas mediante c amara en movimiento, donde la clasi caci on Bayesiana se plantea entre las clases de fondo y primer plano, ambas caracterizadas con modelos a nivel de regi on, con el objetivo de obtener una segmentaci on robusta para este tipo de secuencias. La segunda parte de la investigaci on, se centra en la aplicaci on de estas t ecnicas mono-c amara a entornos multi-vista, donde varias c amaras graban conjuntamente la misma escena. Al inicio de dicho apartado, se propone una segmentaci on de primer plano en secuencias donde se combina una c amara de color con una c amara de profundidad en una clasi caci on que combina los diferentes modelos probabil sticos creados para el fondo y el primer plano en cada c amara, a partir de la fi abilidad que presenta cada sensor. La investigaci on prosigue proponiendo m etodos de segmentaci on de primer plano para entornos multi-vista en salas inteligentes. En estos apartados se diseñan dos sistemas donde la segmentaci on de primer plano y la reconstrucci on 3D se combinan para mejorar los resultados de cada uno de estos procesos. Las propuestas fi nalizan con la presentaci on de un sistema de segmentaci on multi-c amara donde se centraliza la informaci on del objeto a segmentar mediante el diseño de un modelo probabil stico 3D. Los resultados presentados en cada uno de los sistemas, demuestran que la segmentacion de primer plano y la reconstrucci on 3D pueden verse mejorados en estos escenarios mediante el uso de modelos probabilisticos param etricos para modelar los objetos a segmentar, introduciendo as la informaci on disponible del objeto en un marco de clasi caci on Bayesiano

    Human mobility monitoring in very low resolution visual sensor network

    Get PDF
    This paper proposes an automated system for monitoring mobility patterns using a network of very low resolution visual sensors (30 30 pixels). The use of very low resolution sensors reduces privacy concern, cost, computation requirement and power consumption. The core of our proposed system is a robust people tracker that uses low resolution videos provided by the visual sensor network. The distributed processing architecture of our tracking system allows all image processing tasks to be done on the digital signal controller in each visual sensor. In this paper, we experimentally show that reliable tracking of people is possible using very low resolution imagery. We also compare the performance of our tracker against a state-of-the-art tracking method and show that our method outperforms. Moreover, the mobility statistics of tracks such as total distance traveled and average speed derived from trajectories are compared with those derived from ground truth given by Ultra-Wide Band sensors. The results of this comparison show that the trajectories from our system are accurate enough to obtain useful mobility statistics

    VIDEO FOREGROUND LOCALIZATION FROM TRADITIONAL METHODS TO DEEP LEARNING

    Get PDF
    These days, detection of Visual Attention Regions (VAR), such as moving objects has become an integral part of many Computer Vision applications, viz. pattern recognition, object detection and classification, video surveillance, autonomous driving, human-machine interaction (HMI), and so forth. The moving object identification using bounding boxes has matured to the level of localizing the objects along their rigid borders and the process is called foreground localization (FGL). Over the decades, many image segmentation methodologies have been well studied, devised, and extended to suit the video FGL. Despite that, still, the problem of video foreground (FG) segmentation remains an intriguing task yet appealing due to its ill-posed nature and myriad of applications. Maintaining spatial and temporal coherence, particularly at object boundaries, persists challenging, and computationally burdensome. It even gets harder when the background possesses dynamic nature, like swaying tree branches or shimmering water body, and illumination variations, shadows cast by the moving objects, or when the video sequences have jittery frames caused by vibrating or unstable camera mounts on a surveillance post or moving robot. At the same time, in the analysis of traffic flow or human activity, the performance of an intelligent system substantially depends on its robustness of localizing the VAR, i.e., the FG. To this end, the natural question arises as what is the best way to deal with these challenges? Thus, the goal of this thesis is to investigate plausible real-time performant implementations from traditional approaches to modern-day deep learning (DL) models for FGL that can be applicable to many video content-aware applications (VCAA). It focuses mainly on improving existing methodologies through harnessing multimodal spatial and temporal cues for a delineated FGL. The first part of the dissertation is dedicated for enhancing conventional sample-based and Gaussian mixture model (GMM)-based video FGL using probability mass function (PMF), temporal median filtering, and fusing CIEDE2000 color similarity, color distortion, and illumination measures, and picking an appropriate adaptive threshold to extract the FG pixels. The subjective and objective evaluations are done to show the improvements over a number of similar conventional methods. The second part of the thesis focuses on exploiting and improving deep convolutional neural networks (DCNN) for the problem as mentioned earlier. Consequently, three models akin to encoder-decoder (EnDec) network are implemented with various innovative strategies to improve the quality of the FG segmentation. The strategies are not limited to double encoding - slow decoding feature learning, multi-view receptive field feature fusion, and incorporating spatiotemporal cues through long-shortterm memory (LSTM) units both in the subsampling and upsampling subnetworks. Experimental studies are carried out thoroughly on all conditions from baselines to challenging video sequences to prove the effectiveness of the proposed DCNNs. The analysis demonstrates that the architectural efficiency over other methods while quantitative and qualitative experiments show the competitive performance of the proposed models compared to the state-of-the-art

    Improved foreground detection via block-based classifier cascade with probabilistic decision integration

    Get PDF
    Background subtraction is a fundamental low-level processing task in numerous computer vision applications. The vast majority of algorithms process images on a pixel-by-pixel basis, where an independent decision is made for each pixel. A general limitation of such processing is that rich contextual information is not taken into account. We propose a block-based method capable of dealing with noise, illumination variations, and dynamic backgrounds, while still obtaining smooth contours of foreground objects. Specifically, image sequences are analyzed on an overlapping block-by-block basis. A low-dimensional texture descriptor obtained from each block is passed through an adaptive classifier cascade, where each stage handles a distinct problem. A probabilistic foreground mask generation approach then exploits block overlaps to integrate interim block-level decisions into final pixel-level foreground segmentation. Unlike many pixel-based methods, ad-hoc postprocessing of foreground masks is not required. Experiments on the difficult Wallflower and I2R datasets show that the proposed approach obtains on average better results (both qualitatively and quantitatively) than several prominent methods. We furthermore propose the use of tracking performance as an unbiased approach for assessing the practical usefulness of foreground segmentation methods, and show that the proposed approach leads to considerable improvements in tracking accuracy on the CAVIAR dataset

    Object-level dynamic SLAM

    Get PDF
    Visual Simultaneous Localisation and Mapping (SLAM) can estimate a camera's pose in an unknown environment and reconstruct an online map of it. Despite the advances in many real-time dense SLAM systems, most still assume a static environment, which is not a valid assumption in many real-world scenarios. This thesis aims to enable dense visual SLAM to run robustly in a dynamic environment, knowing where the sensor is in the environment, and, also importantly, what and where objects are in the surrounding environment for better scene understanding. The contributions in this thesis are threefold. The first one presents one of the first object-level dynamic SLAM systems that robustly track camera pose while detecting, tracking, and reconstructing all the objects in dynamic scenes. It can continuously fuse geometric, semantic, and motion information for each object into an octree-based volumetric representation. One of the challenges in tracking moving objects is that the object motion can easily break the illumination constancy assumption. In our second contribution, we address this issue by proposing a dense feature-metric alignment to robustly estimate camera and object poses. We will show how to learn dense feature maps and feature-metric uncertainties in a self-supervised way. They formulate a probabilistic feature-metric residual, which can be efficiently solved using Gauss-Newton optimisation and easily coupled with other residuals. So far, we can only reconstruct objects' geometry from the sensor data. Our third contribution further incorporates category-level shape prior to the object mapping. Conditioning on the depth measurement, the learned implicit function completes the unseen part while reconstructing the observed part accurately. It can yield better reconstruction completeness and more accurate object pose estimation. These three contributions in this thesis have advanced the state of the art in visual SLAM. We hope such object-level dynamic SLAM systems will help robots intelligently interact with the human-existing world.Open Acces
    • …
    corecore