7,763 research outputs found

    Method and apparatus for predicting the direction of movement in machine vision

    Get PDF
    A computer-simulated cortical network is presented. The network is capable of computing the visibility of shifts in the direction of movement. Additionally, the network can compute the following: (1) the magnitude of the position difference between the test and background patterns; (2) localized contrast differences at different spatial scales analyzed by computing temporal gradients of the difference and sum of the outputs of paired even- and odd-symmetric bandpass filters convolved with the input pattern; and (3) the direction of a test pattern moved relative to a textured background. The direction of movement of an object in the field of view of a robotic vision system is detected in accordance with nonlinear Gabor function algorithms. The movement of objects relative to their background is used to infer the 3-dimensional structure and motion of object surfaces

    A Fusion Framework for Camouflaged Moving Foreground Detection in the Wavelet Domain

    Full text link
    Detecting camouflaged moving foreground objects has been known to be difficult due to the similarity between the foreground objects and the background. Conventional methods cannot distinguish the foreground from background due to the small differences between them and thus suffer from under-detection of the camouflaged foreground objects. In this paper, we present a fusion framework to address this problem in the wavelet domain. We first show that the small differences in the image domain can be highlighted in certain wavelet bands. Then the likelihood of each wavelet coefficient being foreground is estimated by formulating foreground and background models for each wavelet band. The proposed framework effectively aggregates the likelihoods from different wavelet bands based on the characteristics of the wavelet transform. Experimental results demonstrated that the proposed method significantly outperformed existing methods in detecting camouflaged foreground objects. Specifically, the average F-measure for the proposed algorithm was 0.87, compared to 0.71 to 0.8 for the other state-of-the-art methods.Comment: 13 pages, accepted by IEEE TI
    corecore