5,271 research outputs found

    Sustainable resource allocation for power generation: The role of big data in enabling interindustry architectural innovation

    Get PDF
    Economic, social and environmental requirements make planning for a sustainable electricity generation mix a demanding endeavour. Technological innovation offers a range of renewable generation and energy management options which require fine tuning and accurate control to be successful, which calls for the use of large-scale, detailed datasets. In this paper, we focus on the UK and use Multi-Criteria Decision Making (MCDM) to evaluate electricity generation options against technical, environmental and social criteria. Data incompleteness and redundancy, usual in large-scale datasets, as well as expert opinion ambiguity are dealt with using a comprehensive grey TOPSIS model. We used evaluation scores to develop a multi-objective optimization model to maximize the technical, environmental and social utility of the electricity generation mix and to enable a larger role for innovative technologies. Demand uncertainty was handled with an interval range and we developed our problem with multi-objective grey linear programming (MOGLP). Solving the mathematical model provided us with the electricity generation mix for every 5 min of the period under study. Our results indicate that nuclear and renewable energy options, specifically wind, solar, and hydro, but not biomass energy, perform better against all criteria indicating that interindustry architectural innovation in the power generation mix is key to sustainable UK electricity production and supply

    Resilient integrated energy infrastructures

    Get PDF

    Situation Awareness for Smart Distribution Systems

    Get PDF
    In recent years, the global climate has become variable due to intensification of the greenhouse effect, and natural disasters are frequently occurring, which poses challenges to the situation awareness of intelligent distribution networks. Aside from the continuous grid connection of distributed generation, energy storage and new energy generation not only reduces the power supply pressure of distribution network to a certain extent but also brings new consumption pressure and load impact. Situation awareness is a technology based on the overall dynamic insight of environment and covering perception, understanding, and prediction. Such means have been widely used in security, intelligence, justice, intelligent transportation, and other fields and gradually become the research direction of digitization and informatization in the future. We hope this Special Issue represents a useful contribution. We present 10 interesting papers that cover a wide range of topics all focused on problems and solutions related to situation awareness for smart distribution systems. We sincerely hope the papers included in this Special Issue will inspire more researchers to further develop situation awareness for smart distribution systems. We strongly believe that there is a need for more work to be carried out, and we hope this issue provides a useful open-access platform for the dissemination of new ideas

    Modeling Energy Demand—A Systematic Literature Review

    Get PDF
    In this article, a systematic literature review of 419 articles on energy demand modeling, published between 2015 and 2020, is presented. This provides researchers with an exhaustive overview of the examined literature and classification of techniques for energy demand modeling. Unlike in existing literature reviews, in this comprehensive study all of the following aspects of energy demand models are analyzed: techniques, prediction accuracy, inputs, energy carrier, sector, temporal horizon, and spatial granularity. Readers benefit from easy access to a broad literature base and find decision support when choosing suitable data-model combinations for their projects. Results have been compiled in comprehensive figures and tables, providing a structured summary of the literature, and containing direct references to the analyzed articles. Drawbacks of techniques are discussed as well as countermeasures. The results show that among the articles, machine learning (ML) techniques are used the most, are mainly applied to short-term electricity forecasting on a regional level and rely on historic load as their main data source. Engineering-based models are less dependent on historic load data and cover appliance consumption on long temporal horizons. Metaheuristic and uncertainty techniques are often used in hybrid models. Statistical techniques are frequently used for energy demand modeling as well and often serve as benchmarks for other techniques. Among the articles, the accuracy measured by mean average percentage error (MAPE) proved to be on similar levels for all techniques. This review eases the reader into the subject matter by presenting the emphases that have been made in the current literature, suggesting future research directions, and providing the basis for quantitative testing of hypotheses regarding applicability and dominance of specific methods for sub-categories of demand modeling.BMBF, 03SFK4T0, Verbundvorhaben ENavi: Energiewende-Navigationssystem zur Erfassung, Analyse und Simulation der systemischen Vernetzungen" - Teilvorhaben T0BMWi, 03ET4040C, Verbundvorhaben: Harmonisierung und Entwicklung von Verfahren zur regional und zeitlich aufgelösten Modellierung von Energienachfragen (DemandRegio) Teilvorhaben: ProfileDFG, 414044773, Open Access Publizieren 2021 - 2022 / Technische Universität Berli

    Application of Power Electronics Converters in Smart Grids and Renewable Energy Systems

    Get PDF
    This book focuses on the applications of Power Electronics Converters in smart grids and renewable energy systems. The topics covered include methods to CO2 emission control, schemes for electric vehicle charging, reliable renewable energy forecasting methods, and various power electronics converters. The converters include the quasi neutral point clamped inverter, MPPT algorithms, the bidirectional DC-DC converter, and the push–pull converter with a fuzzy logic controller

    Forecasting Natural Gas: A Literature Survey

    Get PDF
    This work presents a state-of-the-art survey of published papers that forecast natural gas production, consumption or demand, prices and income elasticity, market volatility and hike in prices. New models and techniques that have recently been applied in the field of natural gas forecasting have discussed with highlights on various methodologies, their specifics, data type, data size, data source, results and conclusions. Moreover, we undertook the difficult task of classifying existing models that have been applied in this field by giving their performance for instance. Our objective is to provide a synthesis of published papers in the field of natural gas forecasting, insights on modeling issues to achieve usable results, and the future research directions. This work will help future researchers in the area of forecasting no matter the methodological approach and nature of energy source used. Keywords: Forecasting natural gas; Existing forecasting models; Models categorization. JEL Classifications: C53, Q4, Q4
    corecore