4,236 research outputs found

    Describing and Forecasting Video Access Patterns

    Full text link
    Computer systems are increasingly driven by workloads that reflect large-scale social behavior, such as rapid changes in the popularity of media items like videos. Capacity planners and system designers must plan for rapid, massive changes in workloads when such social behavior is a factor. In this paper we make two contributions intended to assist in the design and provisioning of such systems.We analyze an extensive dataset consisting of the daily access counts of hundreds of thousands of YouTube videos. In this dataset, we find that there are two types of videos: those that show rapid changes in popularity, and those that are consistently popular over long time periods. We call these two types rarely-accessed and frequently-accessed videos, respectively. We observe that most of the videos in our data set clearly fall in one of these two types. For each type of video we ask two questions: first, are there relatively simple models that can describe its daily access patterns? And second, can we use these simple models to predict the number of accesses that a video will have in the near future, as a tool for capacity planning? To answer these questions we develop two different frameworks for characterization and forecasting of access patterns. We show that for frequently-accessed videos, daily access patterns can be extracted via principal component analysis, and used efficiently for forecasting. For rarely-accessed videos, we demonstrate a clustering method that allows one to classify bursts of popularity and use those classifications for forecasting

    Will This Video Go Viral? Explaining and Predicting the Popularity of Youtube Videos

    Full text link
    What makes content go viral? Which videos become popular and why others don't? Such questions have elicited significant attention from both researchers and industry, particularly in the context of online media. A range of models have been recently proposed to explain and predict popularity; however, there is a short supply of practical tools, accessible for regular users, that leverage these theoretical results. HIPie -- an interactive visualization system -- is created to fill this gap, by enabling users to reason about the virality and the popularity of online videos. It retrieves the metadata and the past popularity series of Youtube videos, it employs Hawkes Intensity Process, a state-of-the-art online popularity model for explaining and predicting video popularity, and it presents videos comparatively in a series of interactive plots. This system will help both content consumers and content producers in a range of data-driven inquiries, such as to comparatively analyze videos and channels, to explain and predict future popularity, to identify viral videos, and to estimate response to online promotion.Comment: 4 page

    Revisit Behavior in Social Media: The Phoenix-R Model and Discoveries

    Full text link
    How many listens will an artist receive on a online radio? How about plays on a YouTube video? How many of these visits are new or returning users? Modeling and mining popularity dynamics of social activity has important implications for researchers, content creators and providers. We here investigate the effect of revisits (successive visits from a single user) on content popularity. Using four datasets of social activity, with up to tens of millions media objects (e.g., YouTube videos, Twitter hashtags or LastFM artists), we show the effect of revisits in the popularity evolution of such objects. Secondly, we propose the Phoenix-R model which captures the popularity dynamics of individual objects. Phoenix-R has the desired properties of being: (1) parsimonious, being based on the minimum description length principle, and achieving lower root mean squared error than state-of-the-art baselines; (2) applicable, the model is effective for predicting future popularity values of objects.Comment: To appear on European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases 201

    Analysis and Forecasting of Trending Topics in Online Media Streams

    Full text link
    Among the vast information available on the web, social media streams capture what people currently pay attention to and how they feel about certain topics. Awareness of such trending topics plays a crucial role in multimedia systems such as trend aware recommendation and automatic vocabulary selection for video concept detection systems. Correctly utilizing trending topics requires a better understanding of their various characteristics in different social media streams. To this end, we present the first comprehensive study across three major online and social media streams, Twitter, Google, and Wikipedia, covering thousands of trending topics during an observation period of an entire year. Our results indicate that depending on one's requirements one does not necessarily have to turn to Twitter for information about current events and that some media streams strongly emphasize content of specific categories. As our second key contribution, we further present a novel approach for the challenging task of forecasting the life cycle of trending topics in the very moment they emerge. Our fully automated approach is based on a nearest neighbor forecasting technique exploiting our assumption that semantically similar topics exhibit similar behavior. We demonstrate on a large-scale dataset of Wikipedia page view statistics that forecasts by the proposed approach are about 9-48k views closer to the actual viewing statistics compared to baseline methods and achieve a mean average percentage error of 45-19% for time periods of up to 14 days.Comment: ACM Multimedia 201
    corecore