3,504 research outputs found

    Smart Grid U.S. Transmission Grid: Issues And Opportunities

    Get PDF
    No one can tell you today exactly what technologies will make up the smart grid of the future, but smart grid is not just about the technology. It will involve designing an architecture that will utilize the data that is generated by the technology to automate the grid. It will also involve a paradigm shift in the utility industry with the active participation of customers in the energy delivery process. Deploying smart grid technologies will not be measured in months, but in years and decades. Public policy stands to have a huge impact on this time frame

    Flexibility services for distribution network operation

    Get PDF
    On the way towards a low carbon electricity system, flexibility has become one of the main sources for achieving it. Flexibility can be understood as the ability of a power system to cope with the variability and uncertainty of demand and supply. Both the generation-side and the demand-side can provide it. This research is focused on the role of the demand-side flexibility for providing a service to the distribution system operator, who manages the medium and low-voltage network. By activating this flexibility from the demand-side to the distribution network operator, the latter can avoid or mitigate congestions in the network and prevent grid reinforcement. This thesis starts with analyzing the current state of the art in the field of local electricity markets, setting the baseline for flexibility products in power systems. As a result of the previous analysis, the definition of flexibility is developed more specifically, considering the flexible assets to be controlled, the final client using this flexibility and the time horizon for this flexibility provision. Following the previous step, an aggregated flexibility forecast model is developed, considering a flexibility portfolio based on different flexible assets such as electric vehicles, water boilers, and electric space heaters. The signal is then modeled under a system-oriented approach for providing a service to the distribution network operator under the operation timeline on a day-ahead basis. The flexibility required by the distribution network operator is then calculated through an optimization problem, considering the flexibility activation costs and the network power flow constraints. Finally, since this scenario aims to lower the environmental impacts of the power system, its sustainability is assessed with the life-cycle assessment, considering the entire life cycle and evaluating it in terms of greenhouse gas emissions. This approach enhances the analysis of the potential role of flexibility in the power system, quantifying whether, in all cases, there is a reduction of emissions when shifting the consumption from peak hours to non-peak hours.En el camí cap a un sistema elèctric amb baixes emissions de carboni, la flexibilitat s'ha convertit en una de les principals fonts per aconseguir-ho. La flexibilitat es pot entendre com la capacitat d'un sistema de reaccionar davant la variabilitat i la incertesa provocades per la demanda i la generació. Tant la part de la generació com el costat de la demanda tenen actius per a poder proporcionar-ho. La recerca presentada en aquest manuscrit està enfocada en el paper de la flexibilitat oferta per la demanda, per a proporcionar un servei a l'operador del sistema de distribució, que gestiona les xarxes de mitja i baixa tensió. Gràcies a l'activació de la flexibilitat de la demanda, l'operador de les xarxes de distribució pot evitar o mitigar la congestió de la xarxa i evitar-ne les inversions per a reforçar-la, així com el seu impacte ambiental. Aquesta tesi comença amb l'anàlisi de l'estat de l'art en el camp dels mercats d'electricitat locals, establint-ne la línia base per a la definició dels productes de flexibilitat en els sistemes elèctrics. Com a resultat de l'estudi anterior, la definició de flexibilitat es desenvolupa més específicament, considerant els actius flexibles que han de controlar-se, el client final que utilitza aquesta flexibilitat i l'horitzó temporal per a aquesta disposició de flexibilitat. A continuació es desenvolupa un model de predicció de flexibilitat agregada, considerant una cartera de flexibilitat basada en diferents actius flexibles, com ara vehicles elèctrics, calderes d'aigua i escalfadors elèctrics, gestionats per la figura de l’agregador. El senyal es modela sota un enfocament orientat al sistema per proporcionar un servei a l'operador de la xarxa de distribució, per un horitzó temporal corresponent a l'operació de la xarxa de mitja i baixa tensió. El resultat és un model de la flexibilitat que pot oferir l’agregador. Una vegada desenvolupat el model de flexibilitat pel costat de l’agregador, la tesi s’enfoca al càlcul de la flexibilitat requerida per l’operador de la xarxa de distribució. Això es desenvolupa mitjançant un problema d'optimització, tenint en compte els costos d'activació de la flexibilitat, la localització dels punts on s’injectarà la flexibilitat i les restriccions de flux de potència de la xarxa de distribució. Finalment, atès que aquest escenari pretén reduir l'impacte mediambiental del sistema elèctric, la seva sostenibilitat s'avalua considerant tot el cicle de vida de les tecnologies que hi participen, i avaluant-la en termes d'emissions de gasos d'efecte d'hivernacle. L'ús d'aquest enfocament millora l'anàlisi del potencial paper de la flexibilitat en el sistema elèctric, quantificant si, en tots els casos, hi ha una reducció de les emissions traslladant el consum de les hores punta a hores vall.Postprint (published version

    New actor types in electricity market simulation models: Deliverable D4.4

    Get PDF
    Project TradeRES - New Markets Design & Models for 100% Renewable Power Systems: https://traderes.eu/about/ABSTRACT: The modelling of agents in the simulation models and tools is of primary importance if the quality and the validity of the simulation outcomes are at stake. This is the first version of the report that deals with the representation of electricity market actors’ in the agent based models (ABMs) used in TradeRES project. With the AMIRIS, the EMLab-Generation (EMLab), the MASCEM and the RESTrade models being in the centre of the analysis, the subject matter of this report has been the identification of the actors’ characteristics that are already covered by the initial (with respect to the project) version of the models and the presentation of the foreseen modelling enhancements. For serving these goals, agent attributes and representation methods, as found in the literature of agent-driven models, are considered initially. The detailed review of such aspects offers the necessary background and supports the formation of a context that facilitates the mapping of actors’ characteristics to agent modelling approaches. Emphasis is given in several approaches and technics found in the literature for the development of a broader environment, on which part of the later analysis is deployed. Although the ABMs that are used in the project constitute an important part of the literature, they have not been included in the review since they are the subject of another section.N/

    Risk Management Decision Making for Security and Trust in Hardware Supply Chains

    Get PDF
    Modern cyber-physical systems are enabled by electronic hardware and embedded systems. The security of these sub-components is a concern during the design and operational phases of cyber-physical system life cycles. Compromised electronics can result in mission-critical failures, unauthorized access, and other severe consequences. As systems become more complex and feature greater connectivity, system owners must make decisions regarding how to mitigate risks and ensure resilience and trust. This paper provides an overview of research efforts related to assessing and managing risks, resilience, and trust with an emphasis on electronic hardware and embedded systems. The research takes a decision-oriented perspective, drawing from the perspectives of scenario planning and portfolio analysis, and describes examples related to the risk-based prioritization of cyber assets in large-scale systems

    Opening of Ancillary Service Markets to Distributed Energy Resources: A Review

    Get PDF
    Electric power systems are moving toward more decentralized models, where energy generation is performed by small and distributed power plants, often from renewables. With the gradual phase out from fossil fuels, however, Distribution Energy Resources (DERs) are expected to take over in the provision of all regulation services required to operate the grid. To this purpose, the opening of national Ancillary Service Markets (ASMs) to DERs is considered an essential passage. In order to allow this transition to happen, current opportunities and barriers to market participation of DERs must be clearly identified. In this work, a comprehensive review is provided of the state-of-the-art of research on DER integration into ASMs. The topic at hand is analyzed from different perspectives. First, the current situation and main trends regarding the reformation processes of national ASMs are analyzed to get a clear picture of the evolutions expected and adjustment required in the future, according to the scientific community. Then, the focus is moved to the strategies to be adopted by aggregators for the effective control and coordination of DERs, exploring the challenges posed by the uncertainties affecting the problem. Coordination schemes between transmission and distribution system operators, and the implications on the grid infrastructure operation and planning, are also investigated. Finally, the review deepens the control capabilities required for DER technologies to perform the needed control actions

    Understanding Deregulated Retail Electricity Markets in the Future: A Perspective from Machine Learning and Optimization

    Full text link
    On top of Smart Grid technologies and new market mechanism design, the further deregulation of retail electricity market at distribution level will play a important role in promoting energy system transformation in a socioeconomic way. In today’s retail electricity market, customers have very limited ”energy choice,” or freedom to choose different types of energy services. Although the installation of distributed energy resources (DERs) has become prevalent in many regions, most customers and prosumers who have local energy generation and possible surplus can still only choose to trade with utility companies.They either purchase energy from or sell energy surplus back to the utilities directly while suffering from some price gap. The key to providing more energy trading freedom and open innovation in the retail electricity market is to develop new consumer-centric business models and possibly a localized energy trading platform. This dissertation is exactly pursuing these ideas and proposing a holistic localized electricity retail market to push the next-generation retail electricity market infrastructure to be a level playing field, where all customers have an equal opportunity to actively participate directly. This dissertation also studied and discussed opportunities of many emerging technologies, such as reinforcement learning and deep reinforcement learning, for intelligent energy system operation. Some improvement suggestion of the modeling framework and methodology are included as well.Ph.D.College of Engineering & Computer ScienceUniversity of Michigan-Dearbornhttps://deepblue.lib.umich.edu/bitstream/2027.42/145686/1/Tao Chen Final Dissertation.pdfDescription of Tao Chen Final Dissertation.pdf : Dissertatio

    Hawaii Utility Integration Initiatives to Enable Wind (Wind HUI) Final Technical Report

    Full text link

    Day-ahead trading of aggregated energy flexibility

    Get PDF
    Flexibility of small loads, in particular from Electric Vehicles (EVs), has recently attracted a lot of interest due to their possibility of participating in the energy market and the new commercial potentials. Different from existing work, the aggregation technique proposed in this paper produces flexible aggregated loads from EVs taking into account technical market requirements. The flexible aggregated loads can be further traded in the day-ahead market by a Balance Responsible Party (BRP) via the so-called flexible orders. As a result, the BRP can achieve more than 19% cost reduction in energy purchase based on the 2017 real electricity prices from Danish electricity market.Peer ReviewedPostprint (author's final draft
    corecore