4,558 research outputs found

    Real-time hospital bed occupancy and requirements forecasting

    Get PDF
    To ensure better utilization and availability of the healthcare resources healthcare managers, planners and hospital staff need to develop policies. The hospital length of stay (LOS) of patients and therefore the resource requirements depend on many factors such as the covariates that represent the characteristics of the patients. Here we have used the discharge dataset of Mater Dei Hospital, Malta to model the LOS and admissions. Phase type survival tree is used to cluster patients into homogeneous groups with respect to the LOS and admissions.peer-reviewe

    Transactions of 2019 International Conference on Health Information Technology Advancement Vol. 4 No. 1

    Get PDF
    The Fourth International Conference on Health Information Technology Advancement Kalamazoo, Michigan, October 31 - Nov. 1, 2019. Conference Co-Chairs Bernard T. Han and Muhammad Razi, Department of Business Information Systems, Haworth College of Business, Western Michigan University Kalamazoo, MI 49008 Transaction Editor Dr. Huei Lee, Professor, Department of Computer Information Systems, Eastern Michigan University Ypsilanti, MI 48197 Volume 4, No. 1 Hosted by The Center for Health Information Technology Advancement, WM

    A systematic review of the prediction of hospital length of stay:Towards a unified framework

    Get PDF
    Hospital length of stay of patients is a crucial factor for the effective planning and management of hospital resources. There is considerable interest in predicting the LoS of patients in order to improve patient care, control hospital costs and increase service efficiency. This paper presents an extensive review of the literature, examining the approaches employed for the prediction of LoS in terms of their merits and shortcomings. In order to address some of these problems, a unified framework is proposed to better generalise the approaches that are being used to predict length of stay. This includes the investigation of the types of routinely collected data used in the problem as well as recommendations to ensure robust and meaningful knowledge modelling. This unified common framework enables the direct comparison of results between length of stay prediction approaches and will ensure that such approaches can be used across several hospital environments. A literature search was conducted in PubMed, Google Scholar and Web of Science from 1970 until 2019 to identify LoS surveys which review the literature. 32 Surveys were identified, from these 32 surveys, 220 papers were manually identified to be relevant to LoS prediction. After removing duplicates, and exploring the reference list of studies included for review, 93 studies remained. Despite the continuing efforts to predict and reduce the LoS of patients, current research in this domain remains ad-hoc; as such, the model tuning and data preprocessing steps are too specific and result in a large proportion of the current prediction mechanisms being restricted to the hospital that they were employed in. Adopting a unified framework for the prediction of LoS could yield a more reliable estimate of the LoS as a unified framework enables the direct comparison of length of stay methods. Additional research is also required to explore novel methods such as fuzzy systems which could build upon the success of current models as well as further exploration of black-box approaches and model interpretability

    Improving Emergency Department Patient Flow Through Near Real-Time Analytics

    Get PDF
    ABSTRACT IMPROVING EMERGENCY DEPARTMENT PATIENT FLOW THROUGH NEAR REAL-TIME ANALYTICS This dissertation research investigates opportunities for developing effective decision support models that exploit near real-time (NRT) information to enhance the operational intelligence within hospital Emergency Departments (ED). Approaching from a systems engineering perspective, the study proposes a novel decision support framework for streamlining ED patient flow that employs machine learning, statistical and operations research methods to facilitate its operationalization. ED crowding has become the subject of significant public and academic attention, and it is known to cause a number of adverse outcomes to the patients, ED staff as well as hospital revenues. Despite many efforts to investigate the causes, consequences and interventions for ED overcrowding in the past two decades, scientific knowledge remains limited in regards to strategies and pragmatic approaches that actually improve patient flow in EDs. Motivated by the gaps in research, we develop a near real-time triage decision support system to reduce ED boarding and improve ED patient flow. The proposed system is a novel variant of a newsvendor modeling framework that integrates patient admission probability prediction within a proactive ward-bed reservation system to improve the effectiveness of bed coordination efforts and reduce boarding times for ED patients along with the resulting costs. Specifically, we propose a cost-sensitive bed reservation policy that recommends optimal bed reservation times for patients right during triage. The policy relies on classifiers that estimate the probability that the ED patient will be admitted using the patient information collected and readily available at triage or right after. The policy is cost-sensitive in that it accounts for costs associated with patient admission prediction misclassification as well as costs associated with incorrectly selecting the reservation time. To achieve the objective of this work, we also addressed two secondary objectives: first, development of models to predict the admission likelihood and target admission wards of ED patients; second, development of models to estimate length-of-stay (LOS) of ED patients. For the first secondary objective, we develop an algorithm that incorporates feature selection into a state-of-the-art and powerful probabilistic Bayesian classification method: multi-class relevance vector machine. For the second objective, we investigated the performance of hazard rate models (in particual, the non-parametric Cox proportional hazard model, parametric hazard rate models, as well as artificial neural networks for modeling the hazard rate) to estimate ED LOS by using the information that is available at triage or right after as the covariates in the models. The proposed models are tested using extensive historical data from several U.S. Department of Veterans Affairs Medical Centers (VAMCs) in the Mid-West. The Case Study using historical data from a VAMC demonstrates that applying the proposed framework leads to significant savings associated with reduced boarding times, in particular, for smaller wards with high levels of utilization. For theory, our primary contribution is the development of a cost sensitive ward-bed reservation model that effectively accounts for various costs and uncertainties. This work also contributes to the development of an integrated feature selection method for classification by developing and validating the mathematical derivation for feature selection during mRVM learning. Another contribution stems from investigating how much the ED LOS estimation can be improved by incorporating the information regarding ED orderable item lists. Overall, this work is a successful application of mixed methods of operation research, machine learning and statistics to the important domain of health care system efficiency improvement

    La utilización de la investigación de operaciones como soporte a la toma de decisiones en el sector salud: Un estado del arte

    Get PDF
    The contributions of Operations Research (OR) in the healthcare field have been extensively studied in the scientific literature since the 1960s, covering decision support tools with operational, tactical, and strategic approaches. The aim of this article is to analyze the historical development of the application of OR models in healthcare. The application trends for optimization, planning, and decision- making models are studied through a descriptive literature review and a bibliometric analysis of scientific papers published between 1952 and 2016. An upward trend in the usage of operational models is observed with the predominance of resource optimization approaches and strategic decision-making for public health.Los aportes de la Investigación de Operaciones (IO) en el campo de la salud han sido ampliamente estudiados en la literatura científica desde la década de 1960, abarcando herramientas para el soporte a la decisión en enfoques operacionales, tácticos y estratégicos. El objetivo de este artículo es analizar el avance y el desarrollo histórico del uso de modelos operativos en el campo de la salud. A través de una revisión bibliográfica descriptiva y un análisis bibliométrico de artículos científicos publicados durante el periodo 1952-2016, se estudia el comportamiento de las tendencias en la aplicación de modelos operativos para la optimización, la planificación y la toma de decisiones en el sector salud. Se evidencia una tendencia creciente en el uso de modelos de IO durante el periodo estudiado, predominando las aplicaciones orientadas a la optimización de recursos y decisiones estratégicas de salud pública

    Utilizing artificial intelligence in perioperative patient flow:systematic literature review

    Get PDF
    Abstract. The purpose of this thesis was to map the existing landscape of artificial intelligence (AI) applications used in secondary healthcare, with a focus on perioperative care. The goal was to find out what systems have been developed, and how capable they are at controlling perioperative patient flow. The review was guided by the following research question: How is AI currently utilized in patient flow management in the context of perioperative care? This systematic literature review examined the current evidence regarding the use of AI in perioperative patient flow. A comprehensive search was conducted in four databases, resulting in 33 articles meeting the inclusion criteria. Findings demonstrated that AI technologies, such as machine learning (ML) algorithms and predictive analytics tools, have shown somewhat promising outcomes in optimizing perioperative patient flow. Specifically, AI systems have proven effective in predicting surgical case durations, assessing risks, planning treatments, supporting diagnosis, improving bed utilization, reducing cancellations and delays, and enhancing communication and collaboration among healthcare providers. However, several challenges were identified, including the need for accurate and reliable data sources, ethical considerations, and the potential for biased algorithms. Further research is needed to validate and optimize the application of AI in perioperative patient flow. The contribution of this thesis is summarizing the current state of the characteristics of AI application in perioperative patient flow. This systematic literature review provides information about the features of perioperative patient flow and the clinical tasks of AI applications previously identified
    • …
    corecore