17 research outputs found

    Electronic Part Total Cost Of Ownership And Sourcing Decisions For Long Life Cycle Products

    Get PDF
    The manufacture and support of long life cycle products rely on the availability of suitable parts from competent suppliers which, over long periods of time, leaves parts susceptible to a number of possible long-term supply chain disruptions. Potential supply chain failures can be supplier-related (e.g., bankruptcy, changes in manufacturing process, non-compliance), parts-related (e.g., obsolescence, reliability, design changes), logistical (e.g., transportation mishaps, natural disasters, accidental occurrences) and political/legislative (e.g., trade regulations, embargo, national conflict). Solutions to mitigating the risk of supply chain failure include the strategic formulation of suitable part sourcing strategies. Sourcing strategies refer to the selection of a set of suppliers from which to purchase parts; sourcing strategies include sole, single, dual, second and multi-sourcing. Utilizing various sourcing strategies offer one way of offsetting or avoiding the risk of part unavailability (and its associated penalties) as well as possible benefits from competitive pricing. Although supply chain risks and sourcing strategies have been extensively studied for high-volume, short life cycle products, the applicability of existing work to long life cycle products is unknown. Existing methods used to study part sourcing decisions in high-volume consumer oriented applications are procurement-centric where cost tradeoffs on the part level focus on part pricing, negotiation practices and purchase volumes. These studies are commonplace for strategic part management for short life cycle products; however, conventional procurement approaches offer only a limited view for parts used in long life cycle products. Procurement-driven decision making provides little to no insight into the accumulation of life cycle cost (attributed to the adoption, use and support of the part), which can be significantly larger than procurement costs in long life cycle products. This dissertation defines the sourcing constraints imposed by the shortage of suppliers as a part becomes obsolete or is subject to other long-term supply chain disruptions. A life cycle approach is presented to compare the total cost of ownership of introducing and supporting a set of suppliers, for electronic parts in long life cycle products, against the benefit of reduced long-term supply chain disruption risk. The estimation of risk combines the likelihood or probability of long-term supply chain disruptions (throughout the part's procurement and support life within an OEM's product portfolio) with the consequence of the disruption (impact on the part's total cost of ownership) to determine the "expected cost" associated with a particular sourcing strategy. This dissertation focuses on comparing sourcing strategies used in long life cycle systems and provides application-specific insight into the cost benefits of sourcing strategies towards proactively mitigating DMSMS type part obsolescence

    CONCURRENT MULTI-PART MULTI-EVENT DESIGN REFRESH PLANNING MODELS INCORPORATING SOLUTION REQUIREMENTS AND PART-UNIQUE TEMPORAL CONSTRAINTS

    Get PDF
    Technology obsolescence, also known as DMSMS (Diminishing Manufacturing Sources and Material Shortages), is a significant problem for systems whose operational life is much longer than the procurement lifetimes of their constitute components. The most severely affected systems are sustainment-dominated, which means their long-term sustainment (life-cycle) costs significantly exceed the procurement cost for the system. Unlike high-volume commercial products, these sustainment-dominated systems may require design refreshes to simply remain manufacturable and supportable. A strategic method for reducing the life-cycle cost impact of DMSMS is called refresh planning. The goal of refresh planning is to determine when design refreshes should occur (or what the frequency of refreshes should be) and how to manage the system components that are obsolete or soon to be obsolete at the design refreshes. Existing strategic management approaches focus on methods for determining design refresh dates. While creating a set of feasible design refresh plans is achievable using existing design refresh planning methodologies, the generated refresh plans may not satisfy the needs of the designers (sustainers and customers) because they do not conform to the constraints imposed on the system. This dissertation develops a new refresh planning model that satisfies refresh structure requirements (i.e., requirements that constrain the form of the refresh plan to be periodic) and develops and presents the definition, generalization, synthesis and application of part-unique temporal constraints in the design refresh planning process for systems impacted by DMSMS-type obsolescence. Periodic refresh plans are required by applications that are refresh deployment constrained such as ships and submarines (e.g., only a finite number of dry docks are available to refresh systems). The new refresh planning model developed in this dissertation requires 50% less data and runs 50% faster than the existing state-of-the-art discrete event simulation solutions for problems where a periodic refresh solution is required

    A Survey of the Strategic Alternate Sourcing Program Offices Management of United States Air Force Diminishing Manufacturing Sources and Material Shortages Subject Matter Experts

    Get PDF
    The office designated by the Air Force to be DMSMS subject expert program office is known as the Strategic Alternate Sourcing Program Office (SASPO). Aided by the USAF Program Offices and DMSMS Subject Matter Experts, the SASPO is responsible for sourcing DMSMS resolutions as well as the organizing, training, and equipping of the Program Offices DMSMS Programs. Using quantitative research, this study conducts a survey, with the USAF Program Offices as the unit of analysis, to gain insight as to where the SASPO is doing well and where gaps exist in their program management. The analysis and conclusion identify where the SASPO should focus their attention to proactively manage DMSMS resolutions

    An Evaluation of End of Maintenance Dates and Lifetime Buy Estimations for Electronic Systems Facing Obsolescence

    Get PDF
    The business of supporting legacy electronic systems is challenging due to mismatches between the system support life and the procurement lives of the systems' constituent components. Legacy electronic systems are threatened with Diminishing Manufacturing Sources and Material Shortages (DMSMS)-type obsolescence, and the extent of their system support lives based on existing replenishable and non-replenishable resources may be unknown. This thesis describes the development of the End of Repair/End of Maintenance (EOR/EOM) model, which is a stochastic discrete-event simulation that follows the life history of a population of parts and cards and operates from time-to-failure distributions that are either user-defined, or synthesized from observed failures to date. The model determines the support life (and support costs) of the system based on existing inventories of spare parts and cards, and optionally harvesting parts from existing cards to further extend the life of the system. The model includes: part inventory segregation, modeling of part inventory degradation and periodic inventory inspections, and design refresh planning. A case study using a real legacy system comprised of 117,000 instances of 70 unique cards and 4.5 million unique parts is presented. The case study was used to evaluate the system support life (and support costs) through a series of different scenarios: obsolete parts with no failure history and never failing, obsolete parts with no failure history but immediately incurring their first failures with and without the use of part harvesting. The case study also includes analyses for recording subsequent EOM and EOR dates, sensitivity analyses for selected design refreshes that maximize system sustainment, and design refresh planning to ensure system sustainment to an end of support date. Lifetime buys refer to buying enough parts from the original manufacturer prior to the part's discontinuance in order to support all forecasted future part needs throughout the system's required support life. This thesis describes the development of the Lifetime Buy (LTB) model, a reverse-application of the EOR/EOM model, that follows the life history of an electronic system and determines the number of spares required to ensure system sustainment. The LTB model can generate optimum lifetime buy quantities of parts that minimizes the total life-cycle cost associated with the estimated lifetime buy quantity

    Integrated vs. add-on: A multidimensional conceptualisation of technology obsolescence

    Get PDF
    In the past two decades, technology obsolescence has become an increasingly common feature of the global economy, often precipitated by new technological breakthroughs and innovations. Although a number of companies persist with obsolete technologies until disaster strikes, our understanding of the dynamics of technology obsolescence and why some firms persist with obsolete technologies remains largely underexplored. This conceptual paper seeks to fills these gaps in our understanding by developing a four-domain framework to explicate the dynamics of technologies' obsolescence, which takes into account the components in determining different types of obsolescence. The framework articulates two types of life-cycle match and two types of life-cycle mismatch. The article also contributes to the literature by delineating an integrated framework of firm-specific and market-based factors which account for some firms' persistence with obsolete technologies. Amassing and utilising the latest information to update their technologies can help firms enhance their competitiveness. The wider implications of the analysis for public policy and directions for future research are examined

    Risk Management Decision Making for Security and Trust in Hardware Supply Chains

    Get PDF
    Modern cyber-physical systems are enabled by electronic hardware and embedded systems. The security of these sub-components is a concern during the design and operational phases of cyber-physical system life cycles. Compromised electronics can result in mission-critical failures, unauthorized access, and other severe consequences. As systems become more complex and feature greater connectivity, system owners must make decisions regarding how to mitigate risks and ensure resilience and trust. This paper provides an overview of research efforts related to assessing and managing risks, resilience, and trust with an emphasis on electronic hardware and embedded systems. The research takes a decision-oriented perspective, drawing from the perspectives of scenario planning and portfolio analysis, and describes examples related to the risk-based prioritization of cyber assets in large-scale systems

    A Framework for Mitigating Obsolescence in Military Based Systems

    Get PDF
    Obsolescence is an unavoidable reality in manufacturing systems and supply chain environments as systems are needed to be sustained for longer and longer periods of time. These extended life cycle products include airplanes, ships, industrial equipment, medical equipment, and military systems. The United States military has coined this issue as Diminishing Manufacturing Sources and Material Shortages (DMSMS). Research shows that the main areas of concern for obsolescence are cost optimization, obsolescence management, system life cycle, design/system refresh planning, architecture/open systems, and end-of-life (EOL) predictions. This effort suggests a need for a more effective management approach to tackling obsolescence with an emphasis on proactive management. The goal of this research was to create an obsolescence management framework for the purpose of managing obsolescence issues with military based systems. This research shows the potential for using machine learning as a life cycle forecasting tool over traditional data mining tools. The results for this small-scale case study show promising results for a larger scale experiment. Another powerful proactive strategy using machine learning is building technology refresh cycles into a system based on obsolescence risk levels. Some key areas of focus for a strong framework are funding for a robust DMSMS team, a robust supply chain, system design that factors in obsolescence risk, and consistent communication with all parties involved. It is imperative to develop an effective and data-driven approach to communicating obsolescence impacts to leadership to ensure successful mitigation of obsolescence issues. Some post-case tools and strategies include utilizing sustainment, production, and technology refresh roadmaps, along with employing data driven metrics to provide key information to leadership and demonstrate value to the customer. This study demonstrates opportunities and challenges for entities dealing with component obsolescence, methods for minimizing the issues that go along with it, and identifies best practices for obsolescence management

    Mitigating the risk of software obsolescence in the oil and gas sector

    Get PDF
    This paper focuses on how on-going energy demand, shift in water depth and heavy crude oil type are creating huge obsolescence issues especially software in the offshore oil and gas industry. The aim is to identify and quantify software obsolescence using a novel framework developed to evaluate major software types, their associated obsolescence impact and risk exposure, cost implications, and resolution qualification. Validation of the framework confirmed the role of the framework for life cycle support and guidance related to software obsolescence. The tool can be used for engineering and procurement contracts thereby reducing capital and operating expenditure
    corecore