2,474 research outputs found

    Forecasting electricity consumption by aggregating specialized experts

    Get PDF
    33 pagesInternational audienceWe consider the setting of sequential prediction of arbitrary sequences based on specialized experts. We first provide a review of the relevant literature and present two theoretical contributions: a general analysis of the specialist aggregation rule of Freund et al. (1997) and an adaptation of fixed-share rules of Herbster and Warmuth (1998) in this setting. We then apply these rules to the sequential short-term (one-day-ahead) forecasting of electricity consumption; to do so, we consider two data sets, a Slovakian one and a French one, respectively concerned with hourly and half-hourly predictions. We follow a general methodology to perform the stated empirical studies and detail in particular tuning issues of the learning parameters. The introduced aggregation rules demonstrate an improved accuracy on the data sets at hand; the improvements lie in a reduced mean squared error but also in a more robust behavior with respect to large occasional errors

    Expert Aggregation for Financial Forecasting

    Full text link
    Machine learning algorithms dedicated to financial time series forecasting have gained a lot of interest over the last few years. One difficulty lies in the choice between several algorithms, as their estimation accuracy may be unstable through time. In this paper, we propose to apply an online aggregation-based forecasting model combining several machine learning techniques to build a portfolio which dynamically adapts itself to market conditions. We apply this aggregation technique to the construction of a long-short-portfolio of individual stocks ranked on their financial characteristics and we demonstrate how aggregation outperforms single algorithms both in terms of performances and of stability

    The impact of macroeconomic leading indicators on inventory management

    Get PDF
    Forecasting tactical sales is important for long term decisions such as procurement and informing lower level inventory management decisions. Macroeconomic indicators have been shown to improve the forecast accuracy at tactical level, as these indicators can provide early warnings of changing markets while at the same time tactical sales are sufficiently aggregated to facilitate the identification of useful leading indicators. Past research has shown that we can achieve significant gains by incorporating such information. However, at lower levels, that inventory decisions are taken, this is often not feasible due to the level of noise in the data. To take advantage of macroeconomic leading indicators at this level we need to translate the tactical forecasts into operational level ones. In this research we investigate how to best assimilate top level forecasts that incorporate such exogenous information with bottom level (at Stock Keeping Unit level) extrapolative forecasts. The aim is to demonstrate whether incorporating these variables has a positive impact on bottom level planning and eventually inventory levels. We construct appropriate hierarchies of sales and use that structure to reconcile the forecasts, and in turn the different available information, across levels. We are interested both at the point forecast and the prediction intervals, as the latter inform safety stock decisions. Therefore the contribution of this research is twofold. We investigate the usefulness of macroeconomic leading indicators for SKU level forecasts and alternative ways to estimate the variance of hierarchically reconciled forecasts. We provide evidence using a real case study

    Adaptive Aggregated Predictions for Renewable Energy Systems

    Get PDF
    The paper addresses the problem of generating forecasts for energy production and consumption processes in a renewable energy system. The forecasts are made for a prototype public lighting microgrid, which includes photovoltaic panels and LED luminaries that regulate their lighting levels, as inputs for a receding horizon controller. Several stochastic models are fitted to historical times-series data and it is argued that side information, such as clear-sky predictions or the typical system behavior, can be used as exogenous inputs to increase their performance. The predictions can be further improved by combining the forecasts of several models using online learning, the framework of prediction with expert advice. The paper suggests an adaptive aggregation method which also takes side information into account, and makes a state-dependent aggregation. Numerical experiments are presented, as well, showing the efficiency of the estimated timeseries models and the proposed aggregation approach

    Contributions à l’agrégation séquentielle robuste d’experts : Travaux sur l’erreur d’approximation et la prévision en loi. Applications à la prévision pour les marchés de l’énergie.

    Get PDF
    We are interested in online forecasting of an arbitrary sequence of observations. At each time step, some experts provide predictions of the next observation. Then, we form our prediction by combining the expert forecasts. This is the setting of online robust aggregation of experts. The goal is to ensure a small cumulative regret. In other words, we want that our cumulative loss does not exceed too much the one of the best expert. We are looking for worst-case guarantees: no stochastic assumption on the data to be predicted is made. The sequence of observations is arbitrary. A first objective of this work is to improve the prediction accuracy. We investigate several possibilities. An example is to design fully automatic procedures that can exploit simplicity of the data whenever it is present. Another example relies on working on the expert set so as to improve its diversity. A second objective of this work is to produce probabilistic predictions. We are interested in coupling the point prediction with a measure of uncertainty (i.e., interval forecasts,…). The real world applications of the above setting are multiple. Indeed, very few assumptions are made on the data. Besides, online learning that deals with data sequentially is crucial to process big data sets in real time. In this thesis, we carry out for EDF several empirical studies of energy data sets and we achieve good forecasting performance.Nous nous intéressons à prévoir séquentiellement une suite arbitraire d'observations. À chaque instant, des experts nous proposent des prévisions de la prochaine observation. Nous formons alors notre prévision en mélangeant celles des experts. C'est le cadre de l'agrégation séquentielle d'experts. L'objectif est d'assurer un faible regret cumulé. En d'autres mots, nous souhaitons que notre perte cumulée ne dépasse pas trop celle du meilleur expert sur le long terme. Nous cherchons des garanties très robustes~: aucune hypothèse stochastique sur la suite d'observations à prévoir n'est faite. Celle-ci est supposée arbitraire et nous souhaitons des garanties qui soient vérifiées quoi qu'il arrive. Un premier objectif de ce travail est l'amélioration de la performance des prévisions. Plusieurs possibilités sont proposées. Un exemple est la création d'algorithmes adaptatifs qui cherchent à s'adapter automatiquement à la difficulté de la suite à prévoir. Un autre repose sur la création de nouveaux experts à inclure au mélange pour apporter de la diversité dans l'ensemble d'experts. Un deuxième objectif de la thèse est d'assortir les prévisions d'une mesure d'incertitude, voire de prévoir des lois. Les applications pratiques sont nombreuses. En effet, très peu d'hypothèses sont faites sur les données. Le côté séquentiel permet entre autres de traiter de grands ensembles de données. Nous considérons dans cette thèse divers jeux de données du monde de l'énergie (consommation électrique, prix de l'électricité,...) pour montrer l'universalité de l'approche
    • …
    corecore