1,734 research outputs found

    Control strategies for power distribution networks with electric vehicles integration.

    Get PDF

    Scenarios for the development of smart grids in the UK: literature review

    Get PDF
    Smart grids are expected to play a central role in any transition to a low-carbon energy future, and much research is currently underway on practically every area of smart grids. However, it is evident that even basic aspects such as theoretical and operational definitions, are yet to be agreed upon and be clearly defined. Some aspects (efficient management of supply, including intermittent supply, two-way communication between the producer and user of electricity, use of IT technology to respond to and manage demand, and ensuring safe and secure electricity distribution) are more commonly accepted than others (such as smart meters) in defining what comprises a smart grid. It is clear that smart grid developments enjoy political and financial support both at UK and EU levels, and from the majority of related industries. The reasons for this vary and include the hope that smart grids will facilitate the achievement of carbon reduction targets, create new employment opportunities, and reduce costs relevant to energy generation (fewer power stations) and distribution (fewer losses and better stability). However, smart grid development depends on additional factors, beyond the energy industry. These relate to issues of public acceptability of relevant technologies and associated risks (e.g. data safety, privacy, cyber security), pricing, competition, and regulation; implying the involvement of a wide range of players such as the industry, regulators and consumers. The above constitute a complex set of variables and actors, and interactions between them. In order to best explore ways of possible deployment of smart grids, the use of scenarios is most adequate, as they can incorporate several parameters and variables into a coherent storyline. Scenarios have been previously used in the context of smart grids, but have traditionally focused on factors such as economic growth or policy evolution. Important additional socio-technical aspects of smart grids emerge from the literature review in this report and therefore need to be incorporated in our scenarios. These can be grouped into four (interlinked) main categories: supply side aspects, demand side aspects, policy and regulation, and technical aspects.

    Forecasting Recharging Demand to Integrate Electric Vehicle Fleets in Smart Grids

    Get PDF
    Electric vehicle fleets and smart grids are two growing technologies. These technologies provided new possibilities to reduce pollution and increase energy efficiency. In this sense, electric vehicles are used as mobile loads in the power grid. A distributed charging prioritization methodology is proposed in this paper. The solution is based on the concept of virtual power plants and the usage of evolutionary computation algorithms. Additionally, the comparison of several evolutionary algorithms, genetic algorithm, genetic algorithm with evolution control, particle swarm optimization, and hybrid solution are shown in order to evaluate the proposed architecture. The proposed solution is presented to prevent the overload of the power grid

    Engineering User-Centric Smart Charging Systems

    Get PDF
    Die Integration erneuerbarer Energiequellen und die Sektorenkopplung erhöhen den Bedarf an FlexibilitĂ€t im ElektrizitĂ€tssystem. Elektrofahrzeuge koordiniert zu Laden bietet die Chance solche FlexibilitĂ€t bereitzustellen. Allerdings hĂ€ngt das FlexibilitĂ€tspotential von Elektrofahrzeugen davon ab in welchem Umfang sich die Nutzer der Fahrzeuge dazu entschließen intelligentes Laden zu nutzen. Ziel dieser Dissertation ist es Lösungen fĂŒr intelligente Ladesysteme zu entwickeln, welche die Nutzer zu flexiblerem Laden anreizen und diese dabei zu unterstĂŒtzen. Anhand eines LiteraturĂŒberblicks und einer Expertenbefragung werden zunĂ€chst Ziele identifiziert, welche Nutzer zu einer flexiblen Ladung motivieren können. Die Ergebnisse zeigen, dass neben finanziellen Anreizen auch die Integration erneuer-barer Energien und die Vermeidung von NetzengpĂ€ssen einen Anreiz fĂŒr das flexible La-den darstellen können. In der Folge wird untersucht, ob das Framing der Ladesituation hinsichtlich dieser Ziele die LadeflexibilitĂ€t von Elektrofahrzeugnutzern beeinflussen kann. Hierzu wird ein Online-Experiment mit Elektrofahrzeugnutzern evaluiert. Das sich ein Teil der Nutzer bei einem Umwelt-Framing flexibler verhĂ€lt, macht Feedback darĂŒber, wie die CO2-Emissionen von der bereitgestellten FlexibilitĂ€t abhĂ€ngen zu einem vielversprechenden Anreiz intelligentes Laden zu nutzen. Um solches Feedback zu er-möglichen werden als NĂ€chstes die CO2-Einsparpotenziale eines optimierten Ladens im Vergleich zu unkontrolliertem Laden untersucht. Dazu werden die marginalen Emissions-faktoren im deutschen Stromnetz mithilfe eines regressionsbasierten Ansatzes ermittelt. Um Echtzeit-Feedback in realen Systemen zu ermöglichen wird darauf aufbauend eine Prognosemethode fĂŒr Emissionsfaktoren entwickelt. Die Zielerreichung intelligenten Ladens hĂ€ngt hauptsĂ€chlich von der zeitlichen und energetischen FlexibilitĂ€t der Elektrofahrzeuge ab. Damit Nutzer diese Ladeeinstellungen nicht bei jeder Ankunft an der Ladestation von Hand eingeben zu mĂŒssen, könnten sie durch intelligente Assistenten unterstĂŒtzt werden. HierfĂŒr werden probabilistische Prognosen fĂŒr die FlexibilitĂ€t einzelner LadevorgĂ€nge basierend auf historischen LadevorgĂ€ngen und MobilitĂ€tsmustern entwickelt. DarĂŒber hinaus zeigt eine Fallstudie, dass probabilistische Prognosen besser als Punktprognosen dazu geeignet sind die Ladung mehrerer Elektrofahrzeuge zu koordinieren

    PV Charging and Storage for Electric Vehicles

    Get PDF
    Electric vehicles are only ‘green’ as long as the source of electricity is ‘green’ as well. At the same time, renewable power production suffers from diurnal and seasonal variations, creating the need for energy storage technology. Moreover, overloading and voltage problems are expected in the distributed network due to the high penetration of distributed generation and increased power demand from the charging of electric vehicles. The energy and mobility transition hence calls for novel technological innovations in the field of sustainable electric mobility powered from renewable energy. This Special Issue focuses on recent advances in technology for PV charging and storage for electric vehicles
    • 

    corecore