72 research outputs found

    Forecasting Time Series with VARMA Recursions on Graphs

    Full text link
    Graph-based techniques emerged as a choice to deal with the dimensionality issues in modeling multivariate time series. However, there is yet no complete understanding of how the underlying structure could be exploited to ease this task. This work provides contributions in this direction by considering the forecasting of a process evolving over a graph. We make use of the (approximate) time-vertex stationarity assumption, i.e., timevarying graph signals whose first and second order statistical moments are invariant over time and correlated to a known graph topology. The latter is combined with VAR and VARMA models to tackle the dimensionality issues present in predicting the temporal evolution of multivariate time series. We find out that by projecting the data to the graph spectral domain: (i) the multivariate model estimation reduces to that of fitting a number of uncorrelated univariate ARMA models and (ii) an optimal low-rank data representation can be exploited so as to further reduce the estimation costs. In the case that the multivariate process can be observed at a subset of nodes, the proposed models extend naturally to Kalman filtering on graphs allowing for optimal tracking. Numerical experiments with both synthetic and real data validate the proposed approach and highlight its benefits over state-of-the-art alternatives.Comment: submitted to the IEEE Transactions on Signal Processin

    State Space Methods in Stata

    Get PDF
    We illustrate how to estimate parameters of linear state-space models using the Stata program sspace. We provide examples of how to use sspace to estimate the parameters of unobserved-component models, vector autoregressive moving-average models, and dynamic-factor models. We also show how to compute one-step, filtered, and smoothed estimates of the series and the states; dynamic forecasts and their confidence intervals; and residuals.

    State Space Methods in Stata

    Get PDF
    We illustrate how to estimate parameters of linear state-space models using the Stata program sspace. We provide examples of how to use sspace to estimate the parameters of unobserved-component models, vector autoregressive moving-average models, and dynamic-factor models. We also show how to compute one-step, filtered, and smoothed estimates of the series and the states; dynamic forecasts and their confidence intervals; and residuals

    Forecasting Graph Signals with Recursive MIMO Graph Filters

    Full text link
    Forecasting time series on graphs is a fundamental problem in graph signal processing. When each entity of the network carries a vector of values for each time stamp instead of a scalar one, existing approaches resort to the use of product graphs to combine this multidimensional information, at the expense of creating a larger graph. In this paper, we show the limitations of such approaches, and propose extensions to tackle them. Then, we propose a recursive multiple-input multiple-output graph filter which encompasses many already existing models in the literature while being more flexible. Numerical simulations on a real world data set show the effectiveness of the proposed models

    FC-GAGA: Fully Connected Gated Graph Architecture for Spatio-Temporal Traffic Forecasting

    Full text link
    Forecasting of multivariate time-series is an important problem that has applications in traffic management, cellular network configuration, and quantitative finance. A special case of the problem arises when there is a graph available that captures the relationships between the time-series. In this paper we propose a novel learning architecture that achieves performance competitive with or better than the best existing algorithms, without requiring knowledge of the graph. The key element of our proposed architecture is the learnable fully connected hard graph gating mechanism that enables the use of the state-of-the-art and highly computationally efficient fully connected time-series forecasting architecture in traffic forecasting applications. Experimental results for two public traffic network datasets illustrate the value of our approach, and ablation studies confirm the importance of each element of the architecture. The code is available here: https://github.com/boreshkinai/fc-gaga

    Online Edge Flow Imputation on Networks

    Get PDF
    Author's accepted manuscript© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.An online algorithm for missing data imputation for networks with signals defined on the edges is presented. Leveraging the prior knowledge intrinsic to real-world networks, we propose a bi-level optimization scheme that exploits the causal dependencies and the flow conservation, respectively via (i) a sparse line graph identification strategy based on a group-Lasso and (ii) a Kalman filtering-based signal reconstruction strategy developed using simplicial complex (SC) formulation. The advantages of this first SC-based attempt for time-varying signal imputation have been demonstrated through numerical experiments using EPANET models of both synthetic and real water distribution networks.acceptedVersio

    Volatility forecasting

    Get PDF
    Volatility has been one of the most active and successful areas of research in time series econometrics and economic forecasting in recent decades. This chapter provides a selective survey of the most important theoretical developments and empirical insights to emerge from this burgeoning literature, with a distinct focus on forecasting applications. Volatility is inherently latent, and Section 1 begins with a brief intuitive account of various key volatility concepts. Section 2 then discusses a series of different economic situations in which volatility plays a crucial role, ranging from the use of volatility forecasts in portfolio allocation to density forecasting in risk management. Sections 3, 4 and 5 present a variety of alternative procedures for univariate volatility modeling and forecasting based on the GARCH, stochastic volatility and realized volatility paradigms, respectively. Section 6 extends the discussion to the multivariate problem of forecasting conditional covariances and correlations, and Section 7 discusses volatility forecast evaluation methods in both univariate and multivariate cases. Section 8 concludes briefly. JEL Klassifikation: C10, C53, G1

    Volatility Forecasting

    Get PDF
    Volatility has been one of the most active and successful areas of research in time series econometrics and economic forecasting in recent decades. This chapter provides a selective survey of the most important theoretical developments and empirical insights to emerge from this burgeoning literature, with a distinct focus on forecasting applications. Volatility is inherently latent, and Section 1 begins with a brief intuitive account of various key volatility concepts. Section 2 then discusses a series of different economic situations in which volatility plays a crucial role, ranging from the use of volatility forecasts in portfolio allocation to density forecasting in risk management. Sections 3,4 and 5 present a variety of alternative procedures for univariate volatility modeling and forecasting based on the GARCH, stochastic volatility and realized volatility paradigms, respectively. Section 6 extends the discussion to the multivariate problem of forecasting conditional covariances and correlations, and Section 7 discusses volatility forecast evaluation methods in both univariate and multivariate cases. Section 8 concludes briefly.

    Volatility Forecasting

    Get PDF
    Volatility has been one of the most active and successful areas of research in time series econometrics and economic forecasting in recent decades. This chapter provides a selective survey of the most important theoretical developments and empirical insights to emerge from this burgeoning literature, with a distinct focus on forecasting applications. Volatility is inherently latent, and Section 1 begins with a brief intuitive account of various key volatility concepts. Section 2 then discusses a series of different economic situations in which volatility plays a crucial role, ranging from the use of volatility forecasts in portfolio allocation to density forecasting in risk management. Sections 3, 4 and 5 present a variety of alternative procedures for univariate volatility modeling and forecasting based on the GARCH, stochastic volatility and realized volatility paradigms, respectively. Section 6 extends the discussion to the multivariate problem of forecasting conditional covariances and correlations, and Section 7 discusses volatility forecast evaluation methods in both univariate and multivariate cases. Section 8 concludes briefly.
    corecore