933 research outputs found

    DeepLOB: Deep Convolutional Neural Networks for Limit Order Books

    Full text link
    We develop a large-scale deep learning model to predict price movements from limit order book (LOB) data of cash equities. The architecture utilises convolutional filters to capture the spatial structure of the limit order books as well as LSTM modules to capture longer time dependencies. The proposed network outperforms all existing state-of-the-art algorithms on the benchmark LOB dataset [1]. In a more realistic setting, we test our model by using one year market quotes from the London Stock Exchange and the model delivers a remarkably stable out-of-sample prediction accuracy for a variety of instruments. Importantly, our model translates well to instruments which were not part of the training set, indicating the model's ability to extract universal features. In order to better understand these features and to go beyond a "black box" model, we perform a sensitivity analysis to understand the rationale behind the model predictions and reveal the components of LOBs that are most relevant. The ability to extract robust features which translate well to other instruments is an important property of our model which has many other applications.Comment: 12 pages, 9 figure

    Tensor Representation in High-Frequency Financial Data for Price Change Prediction

    Full text link
    Nowadays, with the availability of massive amount of trade data collected, the dynamics of the financial markets pose both a challenge and an opportunity for high frequency traders. In order to take advantage of the rapid, subtle movement of assets in High Frequency Trading (HFT), an automatic algorithm to analyze and detect patterns of price change based on transaction records must be available. The multichannel, time-series representation of financial data naturally suggests tensor-based learning algorithms. In this work, we investigate the effectiveness of two multilinear methods for the mid-price prediction problem against other existing methods. The experiments in a large scale dataset which contains more than 4 millions limit orders show that by utilizing tensor representation, multilinear models outperform vector-based approaches and other competing ones.Comment: accepted in SSCI 2017, typos fixe

    Convolutional neural networks applied to high-frequency market microstructure forecasting

    Get PDF
    Highly sophisticated artificial neural networks have achieved unprecedented performance across a variety of complex real-world problems over the past years, driven by the ability to detect significant patterns autonomously. Modern electronic stock markets produce large volumes of data, which are very suitable for use with these algorithms. This research explores new scientific ground by designing and evaluating a convolutional neural network in predicting future financial outcomes. A visually inspired transformation process translates high-frequency market microstructure data from the London Stock Exchange into four market-event based input channels, which are used to train six deep networks. Primary results indicate that con-volutional networks behave reasonably well on this task and extract interesting microstructure patterns, which are in line with previous theoretical findings. Furthermore, it demonstrates a new approach using modern deep-learning techniques for exploiting and analysing market microstructure behaviour

    Enhanced news sentiment analysis using deep learning methods

    Get PDF
    We explore the predictive power of historical news sentiments based on financial market performance to forecast financial news sentiments. We define news sentiments based on stock price returns averaged over one minute right after a news article has been released. If the stock price exhibits positive (negative) return, we classify the news article released just prior to the observed stock return as positive (negative). We use Wikipedia and Gigaword five corpus articles from 2014 and we apply the global vectors for word representation method to this corpus to create word vectors to use as inputs into the deep learning TensorFlow network. We analyze high-frequency (intraday) Thompson Reuters News Archive as well as the high-frequency price tick history of the Dow Jones Industrial Average (DJIA 30) Index individual stocks for the period between 1/1/2003 and 12/30/2013. We apply a combination of deep learning methodologies of recurrent neural network with long short-term memory units to train the Thompson Reuters News Archive Data from 2003 to 2012, and we test the forecasting power of our method on 2013 News Archive data. We find that the forecasting accuracy of our methodology improves when we switch from random selection of positive and negative news to selecting the news with highest positive scores as positive news and news with highest negative scores as negative news to create our training data set.Published versio
    • …
    corecore