9,838 research outputs found

    Enhancing the Supply Chain Performance by Integrating Simulated and Physical Agents into Organizational Information Systems

    Get PDF
    As the business environment gets more complicated, organizations must be able to respond to the business changes and adjust themselves quickly to gain their competitive advantages. This study proposes an integrated agent system, called SPA, which coordinates simulated and physical agents to provide an efficient way for organizations to meet the challenges in managing supply chains. In the integrated framework, physical agents coordinate with inter-organizations\' physical agents to form workable business processes and detect the variations occurring in the outside world, whereas simulated agents model and analyze the what-if scenarios to support physical agents in making decisions. This study uses a supply chain that produces digital still cameras as an example to demonstrate how the SPA works. In this example, individual information systems of the involved companies equip with the SPA and the entire supply chain is modeled as a hierarchical object oriented Petri nets. The SPA here applies the modified AGNES data clustering technique and the moving average approach to help each firm generalize customers\' past demand patterns and forecast their future demands. The amplitude of forecasting errors caused by bullwhip effects is used as a metric to evaluate the degree that the SPA affects the supply chain performance. The experimental results show that the SPA benefits the entire supply chain by reducing the bullwhip effects and forecasting errors in a dynamic environment.Supply Chain Performance Enhancement; Bullwhip Effects; Simulated Agents; Physical Agents; Dynamic Customer Demand Pattern Discovery

    Production trend identification and forecast for shop-floor business intelligence

    Get PDF
    The paper introduces a methodology to define production trend classes and also the results to serve with trend prognosis in a given manufacturing situation. The prognosis is valid for one, selected production measure (e.g. a quality dimension of one product, like diameters, angles, surface roughness, pressure, basis position, etc.) but the applied model takes into account the past values of many other, related production data collected typically on the shop-floor, too. Consequently, it is useful in batch or (customized) mass production environments. The proposed solution is applicable to realize production control inside the tolerance limits to proactively avoid the production process going outside from the given upper and lower tolerance limits. The solution was developed and validated on real data collected on the shop-floor; the paper also summarizes the validated application results of the proposed methodology. © 2016, IMEKO-International Measurement Federation Secretariat. All rights reserved

    Smart Grid for the Smart City

    Get PDF
    Modern cities are embracing cutting-edge technologies to improve the services they offer to the citizens from traffic control to the reduction of greenhouse gases and energy provisioning. In this chapter, we look at the energy sector advocating how Information and Communication Technologies (ICT) and signal processing techniques can be integrated into next generation power grids for an increased effectiveness in terms of: electrical stability, distribution, improved communication security, energy production, and utilization. In particular, we deliberate about the use of these techniques within new demand response paradigms, where communities of prosumers (e.g., households, generating part of their electricity consumption) contribute to the satisfaction of the energy demand through load balancing and peak shaving. Our discussion also covers the use of big data analytics for demand response and serious games as a tool to promote energy-efficient behaviors from end users

    An Integrated Multi-Time-Scale Modeling for Solar Irradiance Forecasting Using Deep Learning

    Full text link
    For short-term solar irradiance forecasting, the traditional point forecasting methods are rendered less useful due to the non-stationary characteristic of solar power. The amount of operating reserves required to maintain reliable operation of the electric grid rises due to the variability of solar energy. The higher the uncertainty in the generation, the greater the operating-reserve requirements, which translates to an increased cost of operation. In this research work, we propose a unified architecture for multi-time-scale predictions for intra-day solar irradiance forecasting using recurrent neural networks (RNN) and long-short-term memory networks (LSTMs). This paper also lays out a framework for extending this modeling approach to intra-hour forecasting horizons thus, making it a multi-time-horizon forecasting approach, capable of predicting intra-hour as well as intra-day solar irradiance. We develop an end-to-end pipeline to effectuate the proposed architecture. The performance of the prediction model is tested and validated by the methodical implementation. The robustness of the approach is demonstrated with case studies conducted for geographically scattered sites across the United States. The predictions demonstrate that our proposed unified architecture-based approach is effective for multi-time-scale solar forecasts and achieves a lower root-mean-square prediction error when benchmarked against the best-performing methods documented in the literature that use separate models for each time-scale during the day. Our proposed method results in a 71.5% reduction in the mean RMSE averaged across all the test sites compared to the ML-based best-performing method reported in the literature. Additionally, the proposed method enables multi-time-horizon forecasts with real-time inputs, which have a significant potential for practical industry applications in the evolving grid.Comment: 19 pages, 12 figures, 3 tables, under review for journal submissio

    Job profiling: How artificial intelligence supports the management of complexity induced by product variety

    Get PDF
    Firms and supply chains (SC) increasingly are forced to customise products and optimise processes since today’s markets are, on average, more demanding in terms of both costs and customer satisfaction. Generally, when product variety (PV) increases not only improves sales performance, since products offered better fit customers’ expectations, but also increases the complexity in SC processes management, rising operational costs. For that reason, accurate management of product diversity is a fundamental point for the brands' success, which is why it is going to be investigated in that project. Moreover, firms’ managers apply strategies to mitigate or accommodate this complexity, avoiding the customer satisfaction and cost trade-off to remain competitive and survive. However, we were wondering if it is enough. Artificial Intelligence (AI) has emerged to stay. Digitalisation era, data availability, and the improvement in computing power have boomed AI’s potential in improving systems, controlling processes, and tackling complexity. These strengths are suitable to help managers not only to tackle the complexity arising from PV but also to boost the supply chain performance (SCP

    AI-driven approaches for optimizing the energy efficiency of integrated energy system

    Get PDF
    To decarbonize the global energy system and replace the unidirectional architecture of existing grid networks, integrated and electrified energy systems are becoming more demanding. Energy integration is critical for renewable energy sources like wind, solar, and hydropower. However, there are still specific challenges to overcome, such as their high reliance on the weather and the complexity of their integrated operation. As a result, this research goes through the study of a new approach to energy service that has arisen in the shape of data-driven AI technologies, which hold tremendous promise for system improvement while maximizing energy efficiency and reducing carbon emissions. This research aims to evaluate the use of data-driven AI techniques in electrical integrated energy systems, focusing on energy integration, operation, and planning of multiple energy supplies and demand. Based on the formation point, the main research question is: "To what extent do AI algorithms contribute to attaining greater efficiency of integrated grid systems?". It also included a discussion on four key research areas of AI application: Energy and load prediction, fault prediction, AI-based technologies IoT used for smart monitoring grid system optimization such as energy storage, demand response, grid flexibility, and Business value creation. The study adopted a two-way approach that includes empirical research on energy industry expert interviews and a Likert scale survey among energy sector representatives from Finland, Norway, and Nepal. On the other hand, the theoretical part was from current energy industry optimization models and a review of publications linked to a given research issue. The research's key findings were AI's significant potential in electrically integrated energy systems, which concluded AI's implication as a better understanding of energy consumption patterns, highly effective and precise energy load and fault prediction, automated energy management, enhanced energy storage system, more excellent business value, a smart control center, smooth monitoring, tracking, and communication of energy networks. In addition, further research directions are prospects towards its technical characteristics on energy conversion

    Infrastructure systems modeling using data visualization and trend extraction

    Get PDF
    “Current infrastructure systems modeling literature lacks frameworks that integrate data visualization and trend extraction needed for complex systems decision making and planning. Critical infrastructures such as transportation and energy systems contain interdependencies that cannot be properly characterized without considering data visualization and trend extraction. This dissertation presents two case analyses to showcase the effectiveness and improvements that can be made using these techniques. Case one examines flood management and mitigation of disruption impacts using geospatial characteristics as part of data visualization. Case two incorporates trend analysis and sustainability assessment into energy portfolio transitions. Four distinct contributions are made in this work and divided equally across the two cases. The first contribution identifies trends and flood characteristics that must be included as part of model development. The second contribution uses trend extraction to create a traffic management data visualization system based on the flood influencing factors identified. The third contribution creates a data visualization framework for energy portfolio analysis using a genetic algorithm and fuzzy logic. The fourth contribution develops a sustainability assessment model using trend extraction and time series forecasting of state-level electricity generation in a proposed transition setting. The data visualization and trend extraction tools developed and validated in this research will improve strategic infrastructure planning effectiveness”--Abstract, page iv

    Enhancing livelihoods in farming communities through super-resolution agromet advisories using advanced digital agriculture technologies

    Get PDF
    Agricultural production in India is highly vulnerable to climate change. Transformational change to farming systems is required to cope with this changing climate to maintain food security, and ensure farming to remain economically viable. The south Asian rice-fallow systems occupying 22.3 million ha with about 88% in India, mostly (82%) concentrated in the eastern states, are under threat. These systems currently provide economic and food security for about 11 million people, but only achieve 50% of their yield potential. Improvement in productivity is possible through efficient utilization of these fallow lands. The relatively low production occurs because of sub-optimal water and nutrient management strategies. Historically, the Agro-met advisory service has assisted farmers and disseminated information at a district-level for all the states. In some instances, Agro-met delivers advice at the block level also, but in general, farmers use to follow the district level advice and develop an appropriate management plan like land preparation, sowing, irrigation timing, harvesting etc. The advisories are generated through the District Agrometeorology Unit (DAMU) and Krishi Vigyan Kendra (KVK) network, that consider medium-range weather forecast. Unfortunately, these forecasts advisories are general and broad in nature for a given district and do not scale down to the individual field or farm. Farmers must make complex crop management decisions with limited or generalised information. The lack of fine scale information creates uncertainty for farmers, who then develop risk-averse management strategies that reduce productivity. It is unrealistic to expect the Agro-met advisory service to deliver bespoke information to every farmer and to every field simply with the help of Kilometre-scale weather forecast. New technologies must be embraced to address the emerging crises in food security and economic prosperity. Despite these problems, Agro-met has been successful. New digital technologies have emerged though, and these digital technologies should become part of the Agro-met arsenal to deliver valuable information directly to the farmers at the field scale. The Agro-met service is poised to embrace and deliver new interventions through technology cross-sections such as satellite remote sensing, drone-based survey, mobile based data collection systems, IoT based sensors, using insights derived from a hybridisation of crop and AIML (Artificial Intelligence and Machine Learning) models. These technological advancements will generate fine-scale static and dynamic Agro-met information on cultivated lands, that can be delivered through Application Programming Interface (APIs) and farmers facing applications. We believe investment in this technology, that delivers information directly to the farmers, can reverse the yield gap, and address the negative impacts of a changing climate

    Supporting urban planning of low-carbon precincts: Integrated demand forecasting

    Get PDF
    Waste is a symbol of inefficiency in modern society and represents misallocated resources. This paper outlines an on-going interdisciplinary research project entitled "Integrated ETWW demand forecasting and scenario planning for low-carbon precincts" and reports on first findings and a literature review. This large multi-stakeholder research project develops a shared platform for integrated ETWW (energy, transport, waste and water) planning in a low-carbon urban future, focusing on synergies and alternative approaches to urban planning. The aim of the project is to develop a holistic integrated software tool for demand forecasting and scenario evaluation for residential precincts, covering the four domains, ETWW, using identified commonalities in data requirements and model formulation. The authors of this paper are overseeing the waste domain. A major component of the project will be developing a method for including the impacts of household behavior change in demand forecasting, as well as assessing the overall carbon impacts of urban developments or redevelopments of existing precincts. The resulting tool will allow urban planners, municipalities and developers to assess the future total demands for energy, transport, waste and water whilst in the planning phase. The tool will also help to assess waste management performance and materials flow in relation to energy and water consumption and travel behavior, supporting the design and management of urban systems in different city contexts. © 2013 by the authors
    corecore