369 research outputs found

    Business analytics in industry 4.0: a systematic review

    Get PDF
    Recently, the term “Industry 4.0” has emerged to characterize several Information Technology and Communication (ICT) adoptions in production processes (e.g., Internet-of-Things, implementation of digital production support information technologies). Business Analytics is often used within the Industry 4.0, thus incorporating its data intelligence (e.g., statistical analysis, predictive modelling, optimization) expert system component. In this paper, we perform a Systematic Literature Review (SLR) on the usage of Business Analytics within the Industry 4.0 concept, covering a selection of 169 papers obtained from six major scientific publication sources from 2010 to March 2020. The selected papers were first classified in three major types, namely, Practical Application, Reviews and Framework Proposal. Then, we analysed with more detail the practical application studies which were further divided into three main categories of the Gartner analytical maturity model, Descriptive Analytics, Predictive Analytics and Prescriptive Analytics. In particular, we characterized the distinct analytics studies in terms of the industry application and data context used, impact (in terms of their Technology Readiness Level) and selected data modelling method. Our SLR analysis provides a mapping of how data-based Industry 4.0 expert systems are currently used, disclosing also research gaps and future research opportunities.The work of P. Cortez was supported by FCT - Fundação para a Ciência e Tecnologia within the R&D Units Project Scope: UIDB/00319/2020. We would like to thank to the three anonymous reviewers for their helpful suggestions

    Predicting Completion Risk in PPP Projects using Big Data Analytics

    Get PDF
    Accurate prediction of potential delays in public private partnerships (PPP) projects could provide valuable information relevant for planning and mitigating completion risk in future PPP projects. However, existing techniques for evaluating completion risk remain incapable of identifying hidden patterns in risk behavior within large samples of projects, which are increasingly relevant for accurate prediction. To effectively tackle this problem in PPP projects, this study proposes a Big Data Analytics predictive modeling technique for completion risk prediction. With data from 4294 PPP project samples delivered across Europe between 1992 and 2015, a series of predictive models have been devised and evaluated using linear regression, regression trees, random forest, support vector machine, and deep neural network for completion risk prediction. Results and findings from this study reveal that random forest is an effective technique for predicting delays in PPP projects, with lower average test predicting error than other legacy regression techniques. Research issues relating to model selection, training, and validation are also presented in the study

    Role of Machine Learning, Deep Learning and WSN in Disaster Management: A Review and Proposed Architecture

    Get PDF
    Disasters are occurrences that have the potential to adversely affect a community via casualties, ecological damage, or monetary losses. Due to its distinctive geoclimatic characteristics, India has always been susceptible to natural calamities. Disaster Management is the management of disaster prevention, readiness, response, and recovery tasks in a systematic manner. This paper reviews various types of disasters and their management approaches implemented by researchers using Wireless Sensor Networks (WSNs) and machine learning techniques. It also compares and contrasts various prediction algorithms and uses the optimal algorithm on multiple flood prediction datasets. After understanding the drawbacks of existing datasets, authors have developed a new dataset for Mumbai, Maharashtra consisting of various attributes for flood prediction. The performance of the optimal algorithm on the dataset is seen by the training, validation and testing accuracy of 100%, 98.57% and 77.59% respectively

    Construction output modelling: a systematic review

    Get PDF
    Purpose: Construction economics scholars have emphasised the importance of construction output forecasting and have called for increased investment in infrastructure projects, due to the positive relationship between construction output and economic growth. However, construction output tends to fluctuate over time. Excessive changes in the volume of construction output have a negative impact upon the construction sector, such as liquidation of construction companies and job losses. Information gleaned from extant literature suggests that fluctuation in construction output is a global problem. Evidence indicates that modelling of construction output provides information for understanding the factors responsible for these changes. Methodology: An interpretivist epistemological lens is adopted to conduct a systematic review of published studies on modelling of construction output. A thematic analysis is then presented and the trends and gaps in current knowledge are highlighted. Findings: It is observed that interest rate is the most common determinant of construction output. Also revealed is that very little is known about the underlying factors stimulating growth in the volume of investment in maintenance construction works. Further work is required to investigate the efficacy of using non-linear techniques for construction output modelling. Originality: This study provides a contemporary mapping of existing knowledge relating to construction output and provides insights into gaps in current understanding that can be explored by future researchers

    Intelligent energy management system in buildings

    Get PDF
    Energy management systems have become one of the most significant concepts in the power energy area, due to the dependency of nowadays human’s lifestyle on electrical appliances and increment of energy demand during the past decades. From a general perspective, the total energy consumption by humans can be divided into three main economic sectors, namely industry, transportation, and buildings. Based on recent studies, the buildings present the largest share of consumption, standing for approximately 40% of the total consumption. This fact makes buildings energy management the most important component of energy management. On another hand, according to the variety of different types of buildings and several existing consumption appliances, the management of energy consumption in the building becomes a challenging problem. The main goal of a building energy management system is to control the energy consumption of the building by considering several facts, such as current and estimated consumption and generation, the energy price and comfort of the users. Due to the complexity of this management and limitations of available information, most of the existing systems focus on optimizing the consumption value and the cost of the energy with less consideration of the comforts and habits of the users. Moreover, the context of decision-making is also not sufficiently explored. However, the energy management in the building can be designed based on an intelligent system which has the knowledge to estimate the comforts and needs of the users and acts based on this awareness. This work studies and develops an intelligent energy management system for buildings energy consumption. This system receives the historical data of the building and uses a set of artificial intelligence techniques as well as several designed rulesets and acts as a recommender system. The goal of the generated recommendations by this system is to attune the usage of the electrical appliances of the building by comforts and habits of the residents while considering the price of the electricity market and the current context. Results show that the system enables users to obtain a comfortable environment in the building in the most affordable way.Nas últimas décadas, a dependência do estilo de vida na elevada utilização de dispositivos elétricos e grande consumo energético, faz com que os sistemas de gestão de energia sejam um dos conceitos mais relevantes no setor energético. Numa perspetiva geral, o total da energia consumida divide-se essencialmente em três setores económicos: industrial, transporte e edifícios. Os edifícios têm a maior representatividade, correspondendo aproximadamente a 40% do consumo total. Assim, a gestão energética em edifícios é a componente com maior importância nesta área. Por outro lado, devido à variedade dos diferentes tipos de edifícios e dispositivos de consumo, a gestão do consumo de energia nos edifícios apresenta desafios. O objetivo principal de um sistema de gestão energética em edifícios consiste em controlar o consumo energético no edifício, considerando diversos fatores, tais como o consumo e produção atuais, a sua estimativa, o preço de mercado e conforto dos seus utilizadores. Perante a complexidade desta gestão e das limitações da informação disponível, a maioria dos sistemas tem foco na otimização do consumo e os seus custos, tendo em menor consideração o conforto e hábito dos utilizadores. Além disso, o contexto da tomada de decisão não é devidamente explorado, enquanto a gestão energética em edifícios pode ser baseada num sistema inteligente, cujo conhecimento pode estimar o conforto e necessidades dos seus utilizadores, e assim atuar com base nessa consciência. Este trabalho estuda e desenvolve um sistema inteligente para a gestão do consumo de energia em edifícios. O sistema recebe o histórico de dados de um edifício, e utiliza um conjunto de técnicas de inteligência artificial e conjuntos de regras, funcionando como um sistema de recomendações. O objetivo das recomendações geradas pelo sistema é adaptar os dispositivos elétricos do edifício ao conforto e hábitos dos utilizadores enquanto são considerados o preço de mercado e o contexto atual. Os resultados demonstram que o sistema permite aos utilizadores obter um ambiente confortável no edifício, da forma mais económica possível

    Predictive Analysis of Students’ Learning Performance Using Data Mining Techniques: A Comparative Study of Feature Selection Methods

    Get PDF
    The utilization of data mining techniques for the prompt prediction of academic success has gained significant importance in the current era. There is an increasing interest in utilizing these methodologies to forecast the academic performance of students, thereby facilitating educators to intervene and furnish suitable assistance when required. The purpose of this study was to determine the optimal methods for feature engineering and selection in the context of regression and classification tasks. This study compared the Boruta algorithm and Lasso regression for regression, and Recursive Feature Elimination (RFE) and Random Forest Importance (RFI) for classification. According to the findings, Gradient Boost for the regression part of this study had the least Mean Absolute Error (MAE) and Root-Mean-Square Error (RMSE) of 12.93 and 18.28, respectively, in the case of the Boruta selection method. In contrast, RFI was found to be the superior classification method, yielding an accuracy rate of 78% in the classification part. This research emphasized the significance of employing appropriate feature engineering and selection methodologies to enhance the efficacy of machine learning algorithms. Using a diverse set of machine learning techniques, this study analyzed the OULA dataset, focusing on both feature engineering and selection. Our approach was to systematically compare the performance of different models, leading to insights about the most effective strategies for predicting student success
    corecore