7,183 research outputs found

    An Overview of Electricity Demand Forecasting Techniques

    Get PDF
    Load forecasts are extremely important for energy suppliers and other participants in electric energy generation, transmission, distribution and markets. Accurate models for electric power load forecasting are essential to the operation and planning of a utility company. Load forecasts are extremely important for energy suppliers and other participants in electric energy generation, transmission, distribution and markets. This paper presents a review of electricity demand forecasting techniques. The various types of methodologies and models are included in the literature. Load forecasting can be broadly divided into three categories: short-term forecasts which are usually from one hour to one week, medium forecasts which are usually from a week to a year, and long-term forecasts which are longer than a year.  Based on the various types of studies presented in these papers, the load forecasting techniques may be presented in three major groups: Traditional Forecasting technique, Modified Traditional Technique and Soft Computing Technique. Keywords: Electricity Demand, Forecasting Techniques, Soft Computing, Regression method, SVM

    European exchange trading funds trading with locally weighted support vector regression

    Get PDF
    In this paper, two different Locally Weighted Support Vector Regression (wSVR) algorithms are generated and applied to the task of forecasting and trading five European Exchange Traded Funds. The trading application covers the recent European Monetary Union debt crisis. The performance of the proposed models is benchmarked against traditional Support Vector Regression (SVR) models. The Radial Basis Function, the Wavelet and the Mahalanobis kernel are explored and tested as SVR kernels. Finally, a novel statistical SVR input selection procedure is introduced based on a principal component analysis and the Hansen, Lunde, and Nason (2011) model confidence test. The results demonstrate the superiority of the wSVR models over the traditional SVRs and of the v-SVR over the ε-SVR algorithms. We note that the performance of all models varies and considerably deteriorates in the peak of the debt crisis. In terms of the kernels, our results do not confirm the belief that the Radial Basis Function is the optimum choice for financial series

    Computational intelligence approaches for energy load forecasting in smart energy management grids: state of the art, future challenges, and research directions and Research Directions

    Get PDF
    Energy management systems are designed to monitor, optimize, and control the smart grid energy market. Demand-side management, considered as an essential part of the energy management system, can enable utility market operators to make better management decisions for energy trading between consumers and the operator. In this system, a priori knowledge about the energy load pattern can help reshape the load and cut the energy demand curve, thus allowing a better management and distribution of the energy in smart grid energy systems. Designing a computationally intelligent load forecasting (ILF) system is often a primary goal of energy demand management. This study explores the state of the art of computationally intelligent (i.e., machine learning) methods that are applied in load forecasting in terms of their classification and evaluation for sustainable operation of the overall energy management system. More than 50 research papers related to the subject identified in existing literature are classified into two categories: namely the single and the hybrid computational intelligence (CI)-based load forecasting technique. The advantages and disadvantages of each individual techniques also discussed to encapsulate them into the perspective into the energy management research. The identified methods have been further investigated by a qualitative analysis based on the accuracy of the prediction, which confirms the dominance of hybrid forecasting methods, which are often applied as metaheurstic algorithms considering the different optimization techniques over single model approaches. Based on extensive surveys, the review paper predicts a continuous future expansion of such literature on different CI approaches and their optimizations with both heuristic and metaheuristic methods used for energy load forecasting and their potential utilization in real-time smart energy management grids to address future challenges in energy demand managemen

    Multi-objective particle swarm optimization algorithm for multi-step electric load forecasting

    Get PDF
    As energy saving becomes more and more popular, electric load forecasting has played a more and more crucial role in power management systems in the last few years. Because of the real-time characteristic of electricity and the uncertainty change of an electric load, realizing the accuracy and stability of electric load forecasting is a challenging task. Many predecessors have obtained the expected forecasting results by various methods. Considering the stability of time series prediction, a novel combined electric load forecasting, which based on extreme learning machine (ELM), recurrent neural network (RNN), and support vector machines (SVMs), was proposed. The combined model first uses three neural networks to forecast the electric load data separately considering that the single model has inevitable disadvantages, the combined model applies the multi-objective particle swarm optimization algorithm (MOPSO) to optimize the parameters. In order to verify the capacity of the proposed combined model, 1-step, 2-step, and 3-step are used to forecast the electric load data of three Australian states, including New South Wales, Queensland, and Victoria. The experimental results intuitively indicate that for these three datasets, the combined model outperforms all three individual models used for comparison, which demonstrates its superior capability in terms of accuracy and stability

    Accelerated Particle Swarm Optimization and Support Vector Machine for Business Optimization and Applications

    Full text link
    Business optimization is becoming increasingly important because all business activities aim to maximize the profit and performance of products and services, under limited resources and appropriate constraints. Recent developments in support vector machine and metaheuristics show many advantages of these techniques. In particular, particle swarm optimization is now widely used in solving tough optimization problems. In this paper, we use a combination of a recently developed Accelerated PSO and a nonlinear support vector machine to form a framework for solving business optimization problems. We first apply the proposed APSO-SVM to production optimization, and then use it for income prediction and project scheduling. We also carry out some parametric studies and discuss the advantages of the proposed metaheuristic SVM.Comment: 12 page

    A novel ensemble method for electric vehicle power consumption forecasting: Application to the Spanish system

    Get PDF
    The use of electric vehicle across the world has become one of the most challenging issues for environmental policies. The galloping climate change and the expected running out of fossil fuels turns the use of such non-polluting cars into a priority for most developed countries. However, such a use has led to major concerns to power companies, since they must adapt their generation to a new scenario, in which electric vehicles will dramatically modify the curve of generation. In this paper, a novel approach based on ensemble learning is proposed. In particular, ARIMA, GARCH and PSF algorithms' performances are used to forecast the electric vehicle power consumption in Spain. It is worth noting that the studied time series of consumption is non-stationary and adds difficulties to the forecasting process. Thus, an ensemble is proposed by dynamically weighting all algorithms over time. The proposal presented has been implemented for a real case, in particular, at the Spanish Control Centre for the Electric Vehicle. The performance of the approach is assessed by means of WAPE, showing robust and promising results for this research field.Ministerio de Economía y Competitividad Proyectos ENE2016-77650-R, PCIN-2015-04 y TIN2017-88209-C2-R

    Forecasting Recharging Demand to Integrate Electric Vehicle Fleets in Smart Grids

    Get PDF
    Electric vehicle fleets and smart grids are two growing technologies. These technologies provided new possibilities to reduce pollution and increase energy efficiency. In this sense, electric vehicles are used as mobile loads in the power grid. A distributed charging prioritization methodology is proposed in this paper. The solution is based on the concept of virtual power plants and the usage of evolutionary computation algorithms. Additionally, the comparison of several evolutionary algorithms, genetic algorithm, genetic algorithm with evolution control, particle swarm optimization, and hybrid solution are shown in order to evaluate the proposed architecture. The proposed solution is presented to prevent the overload of the power grid

    Dynamic learning with neural networks and support vector machines

    Get PDF
    Neural network approach has proven to be a universal approximator for nonlinear continuous functions with an arbitrary accuracy. It has been found to be very successful for various learning and prediction tasks. However, supervised learning using neural networks has some limitations because of the black box nature of their solutions, experimental network parameter selection, danger of overfitting, and convergence to local minima instead of global minima. In certain applications, the fixed neural network structures do not address the effect on the performance of prediction as the number of available data increases. Three new approaches are proposed with respect to these limitations of supervised learning using neural networks in order to improve the prediction accuracy.;Dynamic learning model using evolutionary connectionist approach . In certain applications, the number of available data increases over time. The optimization process determines the number of the input neurons and the number of neurons in the hidden layer. The corresponding globally optimized neural network structure will be iteratively and dynamically reconfigured and updated as new data arrives to improve the prediction accuracy. Improving generalization capability using recurrent neural network and Bayesian regularization. Recurrent neural network has the inherent capability of developing an internal memory, which may naturally extend beyond the externally provided lag spaces. Moreover, by adding a penalty term of sum of connection weights, Bayesian regularization approach is applied to the network training scheme to improve the generalization performance and lower the susceptibility of overfitting. Adaptive prediction model using support vector machines . The learning process of support vector machines is focused on minimizing an upper bound of the generalization error that includes the sum of the empirical training error and a regularized confidence interval, which eventually results in better generalization performance. Further, this learning process is iteratively and dynamically updated after every occurrence of new data in order to capture the most current feature hidden inside the data sequence.;All the proposed approaches have been successfully applied and validated on applications related to software reliability prediction and electric power load forecasting. Quantitative results show that the proposed approaches achieve better prediction accuracy compared to existing approaches
    corecore