246 research outputs found

    Dimension and cut vertices: an application of Ramsey theory

    Full text link
    Motivated by quite recent research involving the relationship between the dimension of a poset and graph-theoretic properties of its cover graph, we show that for every d1d\geq 1, if PP is a poset and the dimension of a subposet BB of PP is at most dd whenever the cover graph of BB is a block of the cover graph of PP, then the dimension of PP is at most d+2d+2. We also construct examples which show that this inequality is best possible. We consider the proof of the upper bound to be fairly elegant and relatively compact. However, we know of no simple proof for the lower bound, and our argument requires a powerful tool known as the Product Ramsey Theorem. As a consequence, our constructions involve posets of enormous size.Comment: Final published version with updated reference

    Dimension of posets with planar cover graphs excluding two long incomparable chains

    Full text link
    It has been known for more than 40 years that there are posets with planar cover graphs and arbitrarily large dimension. Recently, Streib and Trotter proved that such posets must have large height. In fact, all known constructions of such posets have two large disjoint chains with all points in one chain incomparable with all points in the other. Gutowski and Krawczyk conjectured that this feature is necessary. More formally, they conjectured that for every k1k\geq 1, there is a constant dd such that if PP is a poset with a planar cover graph and PP excludes k+k\mathbf{k}+\mathbf{k}, then dim(P)d\dim(P)\leq d. We settle their conjecture in the affirmative. We also discuss possibilities of generalizing the result by relaxing the condition that the cover graph is planar.Comment: New section on connections with graph minors, small correction

    A study of discrepancy results in partially ordered sets

    Get PDF
    In 2001, Fishburn, Tanenbaum, and Trenk published a pair of papers that introduced the notions of linear and weak discrepancy of a partially ordered set or poset. Linear discrepancy for a poset is the least k such that for any ordering of the points in the poset there is a pair of incomparable points at least distance k away in the ordering. Weak discrepancy is similar to linear discrepancy except that the distance is observed over weak labelings (i.e. two points can have the same label if they are incomparable, but order is still preserved). My thesis gives a variety of results pertaining to these properties and other forms of discrepancy in posets. The first chapter of my thesis partially answers a question of Fishburn, Tanenbaum, and Trenk that was to characterize those posets with linear discrepancy two. It makes the characterization for those posets with width two and references the paper where the full characterization is given. The second chapter introduces the notion of t-discrepancy which is similar to weak discrepancy except only the weak labelings with at most t copies of any label are considered. This chapter shows that determining a poset's t-discrepancy is NP-Complete. It also gives the t-discrepancy for the disjoint sum of chains and provides a polynomial time algorithm for determining t-discrepancy of semiorders. The third chapter presents another notion of discrepancy namely total discrepancy which minimizes the average distance between incomparable elements. This chapter proves that finding this value can be done in polynomial time unlike linear discrepancy and t-discrepancy. The final chapter answers another question of Fishburn, Tanenbaum, and Trenk that asked to characterize those posets that have equal linear and weak discrepancies. Though determining the answer of whether the weak discrepancy and linear discrepancy of a poset are equal is an NP-Complete problem, the set of minimal posets that have this property are given. At the end of the thesis I discuss two other open problems not mentioned in the previous chapters that relate to linear discrepancy. The first asks if there is a link between a poset's dimension and its linear discrepancy. The second refers to approximating linear discrepancy and possible ways to do it.Ph.D.Committee Chair: Trotter, William T.; Committee Member: Dieci, Luca; Committee Member: Duke, Richard; Committee Member: Randall, Dana; Committee Member: Tetali, Prasa

    Cliquewidth and dimension

    Full text link
    We prove that every poset with bounded cliquewidth and with sufficiently large dimension contains the standard example of dimension kk as a subposet. This applies in particular to posets whose cover graphs have bounded treewidth, as the cliquewidth of a poset is bounded in terms of the treewidth of the cover graph. For the latter posets, we prove a stronger statement: every such poset with sufficiently large dimension contains the Kelly example of dimension kk as a subposet. Using this result, we obtain a full characterization of the minor-closed graph classes C\mathcal{C} such that posets with cover graphs in C\mathcal{C} have bounded dimension: they are exactly the classes excluding the cover graph of some Kelly example. Finally, we consider a variant of poset dimension called Boolean dimension, and we prove that posets with bounded cliquewidth have bounded Boolean dimension. The proofs rely on Colcombet's deterministic version of Simon's factorization theorem, which is a fundamental tool in formal language and automata theory, and which we believe deserves a wider recognition in structural and algorithmic graph theory
    corecore