356 research outputs found

    On the Satisfiability of Temporal Logics with Concrete Domains

    Get PDF
    Temporal logics are a very popular family of logical languages, used to specify properties of abstracted systems. In the last few years, many extensions of temporal logics have been proposed, in order to address the need to express more than just abstract properties. In our work we study temporal logics extended by local constraints, which allow to express quantitative properties on data values from an arbitrary relational structure called the concrete domain. An example of concrete domain can be (Z, <, =), where the integers are considered as a relational structure over the binary order relation and the equality relation. Formulas of temporal logics with constraints are evaluated on data-words or data-trees, in which each node or position is labeled by a vector of data from the concrete domain. We call the constraints local because they can only compare values at a fixed distance inside such models. Several positive results regarding the satisfiability of LTL (linear temporal logic) with constraints over the integers have been established in the past years, while the corresponding results for branching time logics were only partial. In this work we prove that satisfiability of CTL* (computation tree logic) with constraints over the integers is decidable and also lift this result to ECTL*, a proper extension of CTL*. We also consider other classes of concrete domains, particularly ones that are \"tree-like\". We consider semi-linear orders, ordinal trees and trees of a fixed height, and prove decidability in this framework as well. At the same time we prove that our method cannot be applied in the case of the infinite binary tree or the infinitely branching infinite tree. We also look into extending the expressiveness of our logic adding non-local constraints, and find that this leads to undecidability of the satisfiability problem, even on very simple domains like (Z, <, =). We then find a way to restrict the power of the non-local constraints to regain decidability

    Deterministic regular functions of infinite words

    Get PDF
    Regular functions of infinite words are (partial) functions realized by deterministic two-way transducers with infinite look-ahead. Equivalently, Alur et. al. have shown that they correspond to functions realized by deterministic Muller streaming string transducers, and to functions defined by MSO-transductions. Regular functions are however not computable in general (for a classical extension of Turing computability to infinite inputs), and we consider in this paper the class of deterministic regular functions of infinite words, realized by deterministic two-way transducers without look-ahead. We prove that it is a well-behaved class of functions: they are computable, closed under composition, characterized by the guarded fragment of MSO-transductions, by deterministic B\"uchi streaming string transducers, by deterministic two-way transducers with finite look-ahead, and by finite compositions of sequential functions and one fixed basic function called map-copy-reverse.Comment: 45 page

    The Complexity of Bisimulation and Simulation on Finite Systems

    Full text link
    In this paper the computational complexity of the (bi)simulation problem over restricted graph classes is studied. For trees given as pointer structures or terms the (bi)simulation problem is complete for logarithmic space or NC1^1, respectively. This solves an open problem from Balc\'azar, Gabarr\'o, and S\'antha. Furthermore, if only one of the input graphs is required to be a tree, the bisimulation (simulation) problem is contained in AC1^1 (LogCFL). In contrast, it is also shown that the simulation problem is P-complete already for graphs of bounded path-width

    Structural and Computational Existence Results for Multidimensional Subshifts

    Get PDF
    Symbolic dynamics is a branch of mathematics that studies the structure of infinite sequences of symbols, or in the multidimensional case, infinite grids of symbols. Classes of such sequences and grids defined by collections of forbidden patterns are called subshifts, and subshifts of finite type are defined by finitely many forbidden patterns. The simplest examples of multidimensional subshifts are sets of Wang tilings, infinite arrangements of square tiles with colored edges, where adjacent edges must have the same color. Multidimensional symbolic dynamics has strong connections to computability theory, since most of the basic properties of subshifts cannot be recognized by computer programs, but are instead characterized by some higher-level notion of computability. This dissertation focuses on the structure of multidimensional subshifts, and the ways in which it relates to their computational properties. In the first part, we study the subpattern posets and Cantor-Bendixson ranks of countable subshifts of finite type, which can be seen as measures of their structural complexity. We show, by explicitly constructing subshifts with the desired properties, that both notions are essentially restricted only by computability conditions. In the second part of the dissertation, we study different methods of defining (classes of ) multidimensional subshifts, and how they relate to each other and existing methods. We present definitions that use monadic second-order logic, a more restricted kind of logical quantification called quantifier extension, and multi-headed finite state machines. Two of the definitions give rise to hierarchies of subshift classes, which are a priori infinite, but which we show to collapse into finitely many levels. The quantifier extension provides insight to the somewhat mysterious class of multidimensional sofic subshifts, since we prove a characterization for the class of subshifts that can extend a sofic subshift into a nonsofic one.Symbolidynamiikka on matematiikan ala, joka tutkii äärettömän pituisten symbolijonojen ominaisuuksia, tai moniulotteisessa tapauksessa äärettömän laajoja symbolihiloja. Siirtoavaruudet ovat tällaisten jonojen tai hilojen kokoelmia, jotka on määritelty kieltämällä jokin joukko äärellisen kokoisia kuvioita, ja äärellisen tyypin siirtoavaruudet saadaan kieltämällä vain äärellisen monta kuviota. Wangin tiilitykset ovat yksinkertaisin esimerkki moniulotteisista siirtoavaruuksista. Ne ovat värillisistä neliöistä muodostettuja tiilityksiä, joissa kaikkien vierekkäisten sivujen on oltava samanvärisiä. Moniulotteinen symbolidynamiikka on vahvasti yhteydessä laskettavuuden teoriaan, sillä monia siirtoavaruuksien perusominaisuuksia ei ole mahdollista tunnistaa tietokoneohjelmilla, vaan korkeamman tason laskennallisilla malleilla. Väitöskirjassani tutkin moniulotteisten siirtoavaruuksien rakennetta ja sen suhdetta niiden laskennallisiin ominaisuuksiin. Ensimmäisessä osassa keskityn tiettyihin äärellisen tyypin siirtoavaruuksien rakenteellisiin ominaisuuksiin: äärellisten kuvioiden muodostamaan järjestykseen ja Cantor-Bendixsonin astelukuun. Halutunlaisia siirtoavaruuksia rakentamalla osoitan, että molemmat ominaisuudet ovat olennaisesti laskennallisten ehtojen rajoittamia. Väitöskirjan toisessa osassa tutkin erilaisia tapoja määritellä moniulotteisia siirtoavaruuksia, sekä sitä, miten nämä tavat vertautuvat toisiinsa ja tunnettuihin siirtoavaruuksien luokkiin. Käsittelen määritelmiä, jotka perustuvat toisen kertaluvun logiikkaan, kvanttorilaajennukseksi kutsuttuun rajoitettuun loogiseen kvantifiointiin, sekä monipäisiin äärellisiin automaatteihin. Näistä kolmesta määritelmästä kahteen liittyy erilliset siirtoavaruuksien hierarkiat, joiden todistan romahtavan äärellisen korkuisiksi. Kvanttorilaajennuksen tutkimus valottaa myös niin kutsuttujen sofisten siirtoavaruuksien rakennetta, jota ei vielä tunneta hyvin: kyseisessä luvussa selvitän tarkasti, mitkä siirtoavaruudet voivat laajentaa sofisen avaruuden ei-sofiseksi.Siirretty Doriast

    Topological Complexity of Sets Defined by Automata and Formulas

    Get PDF
    In this thesis we consider languages of infinite words or trees defined by automata of various types or formulas of various logics. We ask about the highest possible position in the Borel or the projective hierarchy inhabited by sets defined in a given formalism. The answer to this question is called the topological complexity of the formalism.It is shown that the topological complexity of Monadic Second Order Logic extended with the unbounding quantifier (introduced by Bojańczyk to express some asymptotic properties) over ω-words is the whole projective hierarchy. We also give the exact topological complexities of related classes of languages recognized by nondeterministic ωB-, ωS- and ωBS-automata studied by Bojańczyk and Colcombet, and a lower complexity bound for an alternating variant of ωBS-automata.We present the series of results concerning bi-unambiguous languages of infinite trees, i.e. languages recognized by unambiguous parity tree automata whose complements are also recognized by unambiguous parity automata. We give an example of a bi-unambiguous tree language G that is analytic-complete. We present an operation σ on tree languages with the property that σ(L) is topologically harder than any language in the sigma-algebra generated by the languages continuously reducible to L. If the operation is applied to a bi-unambiguous language than the result is also bi-unambiguous. We then show that the application of the operation can be iterated to obtain harder and harder languages. We also define another operation that enables a limit step iteration. Using the operations we are able to construct a sequence of bi-unambiguous languages of increasing topological complexity, of length at least ω square.W niniejszej rozprawie rozważane są języki nieskończonych słów lub drzew definiowane poprzez automaty różnych typów lub formuły różnych logik. Pytamy o najwyższą możliwą pozycję w hierarchii borelowskiej lub rzutowej zajmowaną przez zbiory definiowane w danym formalizmie. Odpowiedź na to pytanie jest nazywana złożonością topologiczną formalizmu.Przedstawiony został dowód, że złożonością topologiczną Logiki Monadycznej Drugiego Rzędu rozszerzonej o kwantyfikator Unbounding (wprowadzony przez Bojańczyka w celu umożliwienia wyrażania własności asymptotycznych) na słowach nieskończonych jest cała hierarchia rzutowa. Obliczone zostały również złożoności topologiczne klas języków rozpoznawanych przez niedeterministyczne ωB-, ωS- i ωBS-automaty rozważane przez Bojańczyka i Colcombet'a, oraz zostało podane dolne ograniczenie złożoności wariantu alternującego ωBS-automatów.Zaprezentowane zostały wyniki dotyczące języków podwójnie jednoznacznych, tzn. języków rozpoznawanych przez jednoznaczne automaty parzystości na drzewach, których dopełnienia również są rozpoznawane przez jednoznaczne automaty parzystości. Podany został przykład podwójnie jednoznacznego języka drzew G, który jest analityczny-zupełny. Została wprowadzona operacja σ na językach drzew taka, że język σ(L) jest topologicznie bardziej złożony niż jakikolwiek język należący do sigma-algebry generowanej przez języki redukujące się w sposób ciągły do języka L. W wyniku zastosowania powyższej operacji do języka podwójnie jednoznacznego otrzymujemy język podwójnie jednoznaczny. Zostało pokazane, że kolejne iteracje aplikacji powyższej operacji dają coraz bardziej złożone języki. Została również wprowadzona druga operacja, która umożliwia krok graniczny iteracji. Używając obydwu powyższych operacji można skonstruować ciąg długości ω kwadrat złożony z języków podwójnie jednoznacznych o coraz większej złożoności

    Weighted Automata and Logics on Hierarchical Structures and Graphs

    Get PDF
    Formal language theory, originally developed to model and study our natural spoken languages, is nowadays also put to use in many other fields. These include, but are not limited to, the definition and visualization of programming languages and the examination and verification of algorithms and systems. Formal languages are instrumental in proving the correct behavior of automated systems, e.g., to avoid that a flight guidance system navigates two airplanes too close to each other. This vast field of applications is built upon a very well investigated and coherent theoretical basis. It is the goal of this dissertation to add to this theoretical foundation and to explore ways to make formal languages and their models more expressive. More specifically, we are interested in models that are able to model quantitative features of the behavior of systems. To this end, we define and characterize weighted automata over structures with hierarchical information and over graphs. In particular, we study infinite nested words, operator precedence languages, and finite and infinite graphs. We show Büchi-like results connecting weighted automata and weighted monadic second order (MSO) logic for the respective classes of weighted languages over these structures. As special cases, we obtain Büchi-type equivalence results known from the recent literature for weighted automata and weighted logics on words, trees, pictures, and nested words. Establishing such a general result for graphs has been an open problem for weighted logics for some time. We conjecture that our techniques can be applied to derive similar equivalence results in other contexts like traces, texts, and distributed systems

    Semantic Optimization of Conjunctive Queries

    Get PDF
    This work deals with the problem of semantic optimization of the central class of conjunctive queries (CQs). Since CQ evaluation is NP-complete, a long line of research has focussed on identifying fragments of CQs that can be efficiently evaluated. One of the most general restrictions corresponds to generalized hypetreewidth bounded by a fixed constant k ≥ 1; the associated fragment is denoted GHWk. A CQ is semantically in GHWk if it is equivalent to a CQ in GHWk. The problem of checking whether a CQ is semantically in GHWk has been studied in the constraint-free case, and it has been shown to be NP-complete. However, in case the database is subject to constraints such as tuple-generating dependencies (TGDs) that can express, e.g., inclusion dependencies, or equality-generating dependencies (EGDs) that capture, e.g., key dependencies, a CQ may turn out to be semantically in GHWk under the constraints, while not being semantically in GHWk without the constraints. This opens avenues to new query optimization techniques. In this article, we initiate and develop the theory of semantic optimization of CQs under constraints. More precisely, we study the following natural problem: Given a CQ and a set of constraints, is the query semantically in GHWk, for a fixed k ≥ 1, under the constraints, or, in other words, is the query equivalent to one that belongs to GHWk over all those databases that satisfy the constraints? We show that, contrary to what one might expect, decidability of CQ containment is a necessary but not a sufficient condition for the decidability of the problem in question. In particular, we show that checking whether a CQ is semantically in GHW1 is undecidable in the presence of full TGDs (i.e., Datalog rules) or EGDs. In view of the above negative results, we focus on the main classes of TGDs for which CQ containment is decidable and that do not capture the class of full TGDs, i.e., guarded, non-recursive, and sticky sets of TGDs, and show that the problem in question is decidable, while its complexity coincides with the complexity of CQ containment. We also consider key dependencies over unary and binary relations, and we show that the problem in question is decidable in elementary time. Furthermore, we investigate whether being semantically in GHWk alleviates the cost of query evaluation. Finally, in case a CQ is not semantically in GHWk, we discuss how it can be approximated via a CQ that falls in GHWk in an optimal way. Such approximations might help finding “quick” answers to the input query when exact evaluation is intractable
    corecore