17,809 research outputs found

    Stable dynamics in forced systems with sufficiently high/low forcing frequency

    Get PDF
    We consider a class of parametrically forced Hamiltonian systems with one-and-a-half degrees of freedom and study the stability of the dynamics when the frequency of the forcing is relatively high or low. We show that, provided the frequency of the forcing is sufficiently high, KAM theorem may be applied even when the forcing amplitude is far away from the perturbation regime. A similar result is obtained for sufficiently low frequency forcing, but in that case we need the amplitude of the forcing to be not too large; however we are still able to consider amplitudes of the forcing which are outside of the perturbation regime. Our results are illustrated by means of numerical simulations for the system of a forced cubic oscillator. In addition, we find numerically that the dynamics are stable even when the forcing amplitude is very large (beyond the range of validity of the analytical results), provided the frequency of the forcing is taken correspondingly low.Comment: 12 pages, 3 figures, 2 table

    Unions of Onions: Preprocessing Imprecise Points for Fast Onion Decomposition

    Full text link
    Let D\mathcal{D} be a set of nn pairwise disjoint unit disks in the plane. We describe how to build a data structure for D\mathcal{D} so that for any point set PP containing exactly one point from each disk, we can quickly find the onion decomposition (convex layers) of PP. Our data structure can be built in O(nlogn)O(n \log n) time and has linear size. Given PP, we can find its onion decomposition in O(nlogk)O(n \log k) time, where kk is the number of layers. We also provide a matching lower bound. Our solution is based on a recursive space decomposition, combined with a fast algorithm to compute the union of two disjoint onionComment: 10 pages, 5 figures; a preliminary version appeared at WADS 201
    corecore