76 research outputs found

    Dependable mapreduce in a cloud-of-clouds

    Get PDF
    Tese de doutoramento, Informática (Engenharia Informática), Universidade de Lisboa, Faculdade de Ciências, 2017MapReduce is a simple and elegant programming model suitable for loosely coupled parallelization problems—problems that can be decomposed into subproblems. Hadoop MapReduce has become the most popular framework for performing large-scale computation on off-the-shelf clusters, and it is widely used to process these problems in a parallel and distributed fashion. This framework is highly scalable, can deal efficiently with large volumes of unstructured data, and it is a platform for many other applications. However, the framework has limitations concerning dependability. Namely, it is solely prepared to tolerate crash faults by re-executing tasks in case of failure, and to detect file corruptions using file checksums. Unfortunately, there is evidence that arbitrary faults do occur and can affect the correctness of MapReduce execution. Although such Byzantine faults are considered to be rare, particular MapReduce applications are critical and intolerant to this type of fault. Furthermore, typical MapReduce implementations are constrained to a single cloud environment. This is a problem as there is increasing evidence of outages on major cloud offerings, raising concerns about the dependence on a single cloud. In this thesis, I propose techniques to improve the dependability of MapReduce systems. The proposed solutions allow MapReduce to scale out computations to a multi-cloud environment, or cloud of-clouds, to tolerate arbitrary and malicious faults and cloud outages. The proposals have three important properties: they increase the dependability of MapReduce by tolerating the faults mentioned above; they require minimal or no modifications to users’ applications; and they achieve this increased level of fault tolerance at reasonable cost. To achieve these goals, I introduce three key ideas: minimizing the required replication; applying context-based job scheduling based on cloud and network conditions; and performing fine-grained replication. I evaluated all proposed solutions in real testbed environments running typical MapReduce applications. The results demonstrate interesting trade-offs concerning resilience and performance when compared to traditional methods. The fundamental conclusion is that the cost introduced by our solutions is small, and thus deemed acceptable for many critical applications.O MapReduce é um modelo de programação adequado para processar grandes volumes de dados em paralelo, executando um conjunto de tarefas independentes, e combinando os resultados parciais na solução final. OHadoop MapReduce é uma plataforma popular para processar grandes quantidades de dados de forma paralela e distribuída. Do ponto de vista da confiabilidade, a plataforma está preparada exclusivamente para tolerar faltas de paragem, re-executando tarefas, e detectar corrupções de ficheiros usando somas de verificação. Esta é uma importante limitação dado haver evidência de que faltas arbitrárias ocorrem e podem afetar a execução do MapReduce. Embora estas faltas Bizantinas sejam raras, certas aplicações de MapReduce são críticas e não toleram faltas deste tipo. Além disso, o número de ocorrências de interrupções em infraestruturas da nuvem tem vindo a aumentar ao longo dos anos, levantando preocupações sobre a dependência dos clientes num fornecedor único de serviços de nuvem. Nesta tese proponho várias técnicas para melhorar a confiabilidade do sistema MapReduce. As soluções propostas permitem processar tarefas MapReduce num ambiente de múltiplas nuvens para tolerar faltas arbitrárias, maliciosas e faltas de paragem nas nuvens. Estas soluções oferecem três importantes propriedades: toleram os tipos de faltas mencionadas; não exigem modificações às aplicações dos clientes; alcançam esta tolerância a faltas a um custo razoável. Estas técnicas são baseadas nas seguintes ideias: minimizar a replicação, desenvolver algoritmos de escalonamento para o MapReduce baseados nas condições da nuvem e da rede, e criar um sistema de tolerância a faltas com granularidade fina no que respeita à replicação. Avaliei as minhas propostas em ambientes de teste real com aplicações comuns do MapReduce, que me permite demonstrar compromissos interessantes em termos de resiliência e desempenho, quando comparados com métodos tradicionais. Em particular, os resultados mostram que o custo introduzido pelas soluções são aceitáveis para muitas aplicações críticas

    Minimal deployable endpoint-driven network forwarding: principle, designs and applications

    Get PDF
    Networked systems now have significant impact on human lives: the Internet, connecting the world globally, is the foundation of our information age, the data centers, running hundreds of thousands of servers, drive the era of cloud computing, and even the Tor project, a networked system providing online anonymity, now serves millions of daily users. Guided by the end-to-end principle, many computer networks have been designed with a simple and flexible core offering general data transfer service, whereas the bulk of the application-level functionalities have been implemented on endpoints that are attached to the edge of the network. Although the end-to-end design principle gives these networked systems tremendous success, a number of new requirements have emerged for computer networks and their running applications, including untrustworthy of endpoints, privacy requirement of endpoints, more demanding applications, the rise of third-party Intermediaries and the asymmetric capability of endpoints and so on. These emerging requirements have created various challenges in different networked systems. To address these challenges, there are no obvious solutions without adding in-network functions to the network core. However, no design principle has ever been proposed for guiding the implementation of in-network functions. In this thesis, We propose the first such principle and apply this principle to propose four designs in three different networked systems to address four separate challenges. We demonstrate through detailed implementation and extensive evaluations that the proposed principle can live in harmony with the end-to-end principle, and a combination of the two principle offers more complete, effective and accurate guides for innovating the modern computer networks and their applications.Ope

    High-Performance Modelling and Simulation for Big Data Applications

    Get PDF
    This open access book was prepared as a Final Publication of the COST Action IC1406 “High-Performance Modelling and Simulation for Big Data Applications (cHiPSet)“ project. Long considered important pillars of the scientific method, Modelling and Simulation have evolved from traditional discrete numerical methods to complex data-intensive continuous analytical optimisations. Resolution, scale, and accuracy have become essential to predict and analyse natural and complex systems in science and engineering. When their level of abstraction raises to have a better discernment of the domain at hand, their representation gets increasingly demanding for computational and data resources. On the other hand, High Performance Computing typically entails the effective use of parallel and distributed processing units coupled with efficient storage, communication and visualisation systems to underpin complex data-intensive applications in distinct scientific and technical domains. It is then arguably required to have a seamless interaction of High Performance Computing with Modelling and Simulation in order to store, compute, analyse, and visualise large data sets in science and engineering. Funded by the European Commission, cHiPSet has provided a dynamic trans-European forum for their members and distinguished guests to openly discuss novel perspectives and topics of interests for these two communities. This cHiPSet compendium presents a set of selected case studies related to healthcare, biological data, computational advertising, multimedia, finance, bioinformatics, and telecommunications

    Self-management for large-scale distributed systems

    Get PDF
    Autonomic computing aims at making computing systems self-managing by using autonomic managers in order to reduce obstacles caused by management complexity. This thesis presents results of research on self-management for large-scale distributed systems. This research was motivated by the increasing complexity of computing systems and their management. In the first part, we present our platform, called Niche, for programming self-managing component-based distributed applications. In our work on Niche, we have faced and addressed the following four challenges in achieving self-management in a dynamic environment characterized by volatile resources and high churn: resource discovery, robust and efficient sensing and actuation, management bottleneck, and scale. We present results of our research on addressing the above challenges. Niche implements the autonomic computing architecture, proposed by IBM, in a fully decentralized way. Niche supports a network-transparent view of the system architecture simplifying the design of distributed self-management. Niche provides a concise and expressive API for self-management. The implementation of the platform relies on the scalability and robustness of structured overlay networks. We proceed by presenting a methodology for designing the management part of a distributed self-managing application. We define design steps that include partitioning of management functions and orchestration of multiple autonomic managers. In the second part, we discuss robustness of management and data consistency, which are necessary in a distributed system. Dealing with the effect of churn on management increases the complexity of the management logic and thus makes its development time consuming and error prone. We propose the abstraction of Robust Management Elements, which are able to heal themselves under continuous churn. Our approach is based on replicating a management element using finite state machine replication with a reconfigurable replica set. Our algorithm automates the reconfiguration (migration) of the replica set in order to tolerate continuous churn. For data consistency, we propose a majority-based distributed key-value store supporting multiple consistency levels that is based on a peer-to-peer network. The store enables the tradeoff between high availability and data consistency. Using majority allows avoiding potential drawbacks of a master-based consistency control, namely, a single-point of failure and a potential performance bottleneck. In the third part, we investigate self-management for Cloud-based storage systems with the focus on elasticity control using elements of control theory and machine learning. We have conducted research on a number of different designs of an elasticity controller, including a State-Space feedback controller and a controller that combines feedback and feedforward control. We describe our experience in designing an elasticity controller for a Cloud-based key-value store using state-space model that enables to trade-off performance for cost. We describe the steps in designing an elasticity controller. We continue by presenting the design and evaluation of ElastMan, an elasticity controller for Cloud-based elastic key-value stores that combines feedforward and feedback control
    corecore