125 research outputs found

    Exploring affective design for physical controls

    Get PDF
    Physical controls such as knobs, sliders, and buttons are experiencing a revival as many computing systems progress from personal computing architectures towards ubiquitous computing architectures. We demonstrate a process for measuring and comparing visceral emotional responses of a physical control to performance results of a target acquisition task. In our user study, participants experienced mechanical and rendered friction, inertia, and detent dynamics as they turned a haptic knob towards graphical targets of two different widths and amplitudes. Together, this process and user study provide novel affect- and performance-based design guidance to developers of physical controls for emerging ubiquitous computing environments. Our work bridges extensive human factors work in mechanical systems that peaked in the 1960’s, to contemporary trends, with a goal of integrating mechatronic controls into emerging ubiquitous computing systems. Author Keywords Haptic display, physical control, design process, affect

    Haptic-GeoZui3D: Exploring the Use of Haptics in AUV Path Planning

    Get PDF
    We have developed a desktop virtual reality system that we call Haptic-GeoZui3D, which brings together 3D user interaction and visualization to provide a compelling environment for AUV path planning. A key component in our system is the PHANTOM haptic device (SensAble Technologies, Inc.), which affords a sense of touch and force feedback – haptics – to provide cues and constraints to guide the user’s interaction. This paper describes our system, and how we use haptics to significantly augment our ability to lay out a vehicle path. We show how our system works well for quickly defining simple waypoint-towaypoint (e.g. transit) path segments, and illustrate how it could be used in specifying more complex, highly segmented (e.g. lawnmower survey) paths

    Functional requirements for the man-vehicle systems research facility

    Get PDF
    The NASA Ames Research Center proposed a man-vehicle systems research facility to support flight simulation studies which are needed for identifying and correcting the sources of human error associated with current and future air carrier operations. The organization of research facility is reviewed and functional requirements and related priorities for the facility are recommended based on a review of potentially critical operational scenarios. Requirements are included for the experimenter's simulation control and data acquisition functions, as well as for the visual field, motion, sound, computation, crew station, and intercommunications subsystems. The related issues of functional fidelity and level of simulation are addressed, and specific criteria for quantitative assessment of various aspects of fidelity are offered. Recommendations for facility integration, checkout, and staffing are included

    An augmented haptic interface as applied to flow visualization

    Get PDF
    A novel 3D computer interface is proposed in which a physical handle containing force sensors and capable of simulating virtual touch through force feedback is coupled to a variety of virtual tools in a 3D virtual environment. The visual appearance of each tool reflects its capabilities. At one moment a user might feel they are holding a virtual grabber, activated by squeezing, and at another moment they are holding a virtual turntable activated by physical motion of a virtual wheel. In this way it is intended that form and function can be combined so that users rapidly learn the functional capabilities of the tools and retain this learning. It is also intended that the tools be easy to use because of intuitive mappings of forces to actions. A virtual environment is constructed to test this concept, and an evaluation of the interface conducted

    A qualitative analysis of haptic feedback in music focused exercises new interfaces for musical expression

    Get PDF
    We present the findings of a pilot-study that analysed the role of haptic feedback in a musical context. To closely examine the role of haptics in Digital Musical Instrument (DMI) design an experiment was formulated to measure the users’ perception of device usability across four separate feedback stages: fully haptic (force and tactile combined), constant force only, vibrotactile only, and no feedback. The study was piloted over extended periods with the intention of exploring the application and integration of DMIs in real-world musical contexts. Applying a music orientated analysis of this type enabled the investigative process to not only take place over a comprehensive period, but allowed for the exploration of DMI integration in everyday compositional and explorative practices. As with any investigation that involves creativity, it was important that the participants did not feel rushed or restricted. That is, they were given sufficient time to explore and assess the different feedback types without constraint. This provided an accurate and representational set of qualitative data for validating the participants’ experience with the different feedback types they were presented with

    A Qualitative Analysis of Haptic Feedback in Music Focused Exercises

    Get PDF
    We present the findings of a pilot-study that analysed the role of haptic feedback in a musical context. To examine the role of haptics in Digital Musical Instrument (DMI) design an experiment was formulated to measure the users’ perception of device usability across four separate feedback stages: fully haptic (force and tactile combined), constant force only, vibrotactile only, and no feedback. The study was piloted over extended periods with the intention of exploring the application and integration of DMIs in real-world musical contexts. Applying a music orientated analysis of this type enabled the investigative process to not only take place over a comprehensive period, but allowed for the exploration of DMI integration in everyday compositional practices. As with any investigation that involves creativity, it was important that the participants did not feel rushed or restricted. That is, they were given sufficient time to explore and assess the different feedback types without constraint. This provided an accurate and representational set of qualitative data for validating the participants’ experience with the different feedback types they were presented with

    The Graphical Access Challenge for People with Visual Impairments: Positions and Pathways Forward

    Get PDF
    Graphical access is one of the most pressing challenges for individuals who are blind or visually impaired. This chapter discusses some of the factors underlying the graphics access challenge, reviews prior approaches to addressing this long-standing information access barrier, and describes some promising new solutions. We specifically focus on touchscreen-based smart devices, a relatively new class of information access technologies, which our group believes represent an exemplary model of user-centered, needs-based design. We highlight both the challenges and the vast potential of these technologies for alleviating the graphics accessibility gap and share the latest results in this line of research. We close with recommendations on ideological shifts in mindset about how we approach solving this vexing access problem, which will complement both technological and perceptual advancements that are rapidly being uncovered through a growing research community in this domain

    Touchmover: Actuated 3d touchscreen with haptic feedback

    Get PDF
    ABSTRACT This paper presents the design and development of a novel visual+haptic device that co-locates 3D stereo visualization, direct touch and touch force sensing with a robotically actuated display. Our actuated immersive 3D display, called TouchMover, is capable of providing 1D movement (up to 36cm) and force feedback (up to 230N) in a single dimension, perpendicular to the screen plane. In addition to describing the details of our design, we showcase how TouchMover allows the user to: 1) interact with 3D objects by pushing them on the screen with realistic force feedback, 2) touch and feel the contour of a 3D object, 3) explore and annotate volumetric medical images (e.g., MRI brain scans) and 4) experience different activation forces and stiffness when interacting with common 2D on-screen elements (e.g., buttons). We also contribute the results of an experiment which demonstrates the effectiveness of the haptic output of our device. Our results show that people are capable of disambiguating between 10 different 3D shapes with the same 2D footprint by touching alone and without any visual feedback (85% recognition rate, 12 participants)

    Improving expressivity in desktop interactions with a pressure-augmented mouse

    Get PDF
    Desktop-based Windows, Icons, Menus and Pointers (WIMP) interfaces have changed very little in the last 30 years, and are still limited by a lack of powerful and expressive input devices and interactions. In order to make desktop interactions more expressive and controllable, expressive input mechanisms like pressure input must be made available to desktop users. One way to provide pressure input to these users is through a pressure-augmented computer mouse; however, before pressure-augmented mice can be developed, design information must be provided to mouse developers. The problem we address in this thesis is that there is a lack of ergonomics and performance information for the design of pressure-augmented mice. Our solution was to provide empirical performance and ergonomics information for pressure-augmented mice by performing five experiments. With the results of our experiments we were able to identify the optimal design parameters for pressure-augmented mice and provide a set of recommendations for future pressure-augmented mouse designs
    • …
    corecore