7 research outputs found

    No Clamp Robotic Assembly with Use of Point Cloud Data from Low-Cost Triangulation Scanner

    Get PDF
    The paper shows the clamp-less assembly idea as a very important one in the modern assembly. Assembly equipment such as clamps represent a significant group of industrial equipment in manufacturing plants whose number can be effectively reduced. The article presents the concept of using industrial robot equipped with a triangulation scanner in the assembly process in order to minimize the number of clamps that hold the units in a particular position in space. It also shows how the system searches for objects in the point cloud based on multi-step processing algorithm proposed in this work, then picks them up, transports and positions them in the right assembly locations with the use of industrial robot manipulator. The accuracy of the positioning of parts was also examined as well as the impact of the number of iterations of the algorithm searching the models in the point cloud on the accuracy of determining the position of the objects. The tests show that presented system is suitable for assembly of various items as plastic packaging and palletizing of products. Such kind of system is the basis for modern, fully flexible assembly systems

    Hydrogen Fuel Cell Gasket Handling and Sorting With Machine Vision Integrated Dual Arm Robot

    Get PDF
    Recently demonstrated robotic assembling technologies for fuel cell stacks used fuel cell components manually pre-arranged in stacks (presenters), all oriented in the same position. Identifying the original orientation of fuel cell components and loading them in stacks for a subsequent automated assembly process is a difficult, repetitive work cycle which if done manually, deceives the advantages offered by automated fabrication technologies of fuel cell components and by robotic assembly processes. We present an innovative robotic technology which enables the integration of automated fabrication processes of fuel cell components with robotic assembly of fuel cell stacks into a fully automated fuel cell manufacturing line. This task, which has not been addressed in the past uses a Yaskawa Motoman SDA5F dual arm robot with integrated machine vision system. The process is used to identify and grasp randomly placed, slightly asymmetric fuel cell components having a total alpha-plus-beta symmetry angle of 720o, to reorient them all in the same position and stack them in presenters for a subsequent robotic assembly process. The dual arm robot technology is selected for increased productivity and ease of gasket handling during reorientation. The initial position and orientation of the gaskets is identified by image analysis using a Cognex machine vision system with fixed camera. The process was demonstrated as part of a larger endeavor of bringing to readiness advanced manufacturing technologies for alternative energy systems, and responds the high priority needs identified by the U.S. Department of Energy for fuel cells manufacturing research and development

    Annals of Scientific Society for Assembly, Handling and Industrial Robotics 2021

    Get PDF
    This Open Access proceedings presents a good overview of the current research landscape of assembly, handling and industrial robotics. The objective of MHI Colloquium is the successful networking at both academic and management level. Thereby, the colloquium focuses an academic exchange at a high level in order to distribute the obtained research results, to determine synergy effects and trends, to connect the actors in person and in conclusion, to strengthen the research field as well as the MHI community. In addition, there is the possibility to become acquatined with the organizing institute. Primary audience is formed by members of the scientific society for assembly, handling and industrial robotics (WGMHI)

    Annals of Scientific Society for Assembly, Handling and Industrial Robotics 2021

    Get PDF
    This Open Access proceedings presents a good overview of the current research landscape of assembly, handling and industrial robotics. The objective of MHI Colloquium is the successful networking at both academic and management level. Thereby, the colloquium focuses an academic exchange at a high level in order to distribute the obtained research results, to determine synergy effects and trends, to connect the actors in person and in conclusion, to strengthen the research field as well as the MHI community. In addition, there is the possibility to become acquatined with the organizing institute. Primary audience is formed by members of the scientific society for assembly, handling and industrial robotics (WGMHI)

    Computing gripping points in 2D parallel surfaces via polygon clipping

    Get PDF

    Annals of Scientific Society for Assembly, Handling and Industrial Robotics 2021

    Get PDF
    This Open Access proceedings presents a good overview of the current research landscape of assembly, handling and industrial robotics. The objective of MHI Colloquium is the successful networking at both academic and management level. Thereby, the colloquium focuses an academic exchange at a high level in order to distribute the obtained research results, to determine synergy effects and trends, to connect the actors in person and in conclusion, to strengthen the research field as well as the MHI community. In addition, there is the possibility to become acquatined with the organizing institute. Primary audience is formed by members of the scientific society for assembly, handling and industrial robotics (WGMHI)
    corecore