23,069 research outputs found

    Tactile Sensing for Robotic Applications

    Get PDF
    This chapter provides an overview of tactile sensing in robotics. This chapter is an attempt to answer three basic questions: \u2022 What is meant by Tactile Sensing? \u2022 Why Tactile Sensing is important? \u2022 How Tactile Sensing is achieved? The chapter is organized to sequentially provide the answers to above basic questions. Tactile sensing has often been considered as force sensing, which is not wholly true. In order to clarify such misconceptions about tactile sensing, it is defined in section 2. Why tactile section is important for robotics and what parameters are needed to be measured by tactile sensors to successfully perform various tasks, are discussed in section 3. An overview of `How tactile sensing has been achieved\u2019 is given in section 4, where a number of technologies and transduction methods, that have been used to improve the tactile sensing capability of robotic devices, are discussed. Lack of any tactile analog to Complementary Metal Oxide Semiconductor (CMOS) or Charge Coupled Devices (CCD) optical arrays has often been cited as one of the reasons for the slow development of tactile sensing vis-\ue0-vis other sense modalities like vision sensing. Our own contribution \u2013 development of tactile sensing arrays using piezoelectric polymers and involving silicon micromachining - is an attempt in the direction of achieving tactile analog of CMOS optical arrays. The first phase implementation of these tactile sensing arrays is discussed in section 5. Section 6 concludes the chapter with a brief discussion on the present status of tactile sensing and the challenges that remain to be solved

    Piezoresistive tactile sensor discriminating multidirectional forces

    Get PDF
    Flexible tactile sensors capable of detecting the magnitude and direction of the applied force together are of great interest for application in human-interactive robots, prosthetics, and bionic arms/feet. Human skin contains excellent tactile sensing elements, mechanoreceptors, which detect their assigned tactile stimuli and transduce them into electrical signals. The transduced signals are transmitted through separated nerve fibers to the central nerve system without complicated signal processing. Inspired by the function and organization of human skin, we present a piezoresistive type tactile sensor capable of discriminating the direction and magnitude of stimulations without further signal processing. Our tactile sensor is based on a flexible core and four sidewall structures of elastomer, where highly sensitive interlocking piezoresistive type sensing elements are embedded. We demonstrate the discriminating normal pressure and shear force simultaneously without interference between the applied forces. The developed sensor can detect down to 128 Pa in normal pressure and 0.08 N in shear force, respectively. The developed sensor can be applied in the prosthetic arms requiring the restoration of tactile sensation to discriminate the feeling of normal and shear force like human skin.open0

    Design of Novel Sensors and Instruments for Minimally Invasive Lung Tumour Localization via Palpation

    Get PDF
    Minimally Invasive Thoracoscopic Surgery (MITS) has become the treatment of choice for lung cancer. However, MITS prevents the surgeons from using manual palpation, thereby often making it challenging to reliably locate the tumours for resection. This thesis presents the design, analysis and validation of novel tactile sensors, a novel miniature force sensor, a robotic instrument, and a wireless hand-held instrument to address this limitation. The low-cost, disposable tactile sensors have been shown to easily detect a 5 mm tumour located 10 mm deep in soft tissue. The force sensor can measure six degrees of freedom forces and torques with temperature compensation using a single optical fiber. The robotic instrument is compatible with the da Vinci surgical robot and allows the use of tactile sensing, force sensing and ultrasound to localize the tumours. The wireless hand-held instrument allows the use of tactile sensing in procedures where a robot is not available

    Effects of force-torque and tactile haptic modalities on classifying the success of robot manipulation tasks

    Full text link
    We investigate which haptic sensing modalities, or combination of haptic sensing modalities, best enable a robot to determine whether it successfully completed a manipulation task. In this paper, we consider haptic sensing modalities obtained from a wrist-mounted force-torque sensor and three types of fingertip sensors: a pair of FlexiForce force-sensing resistors, a pair of NumaTac sensors, and a pair of BioTac sensors. For each type of fingertip sensor, we simultaneously record force-torque and fingertip tactile data as the robot attempted to complete two manipulation tasks-a picking task and a scooping task-two-hundred times each. We leverage the resulting dataset to train and test a classification method using forty-one different haptic feature combinations, obtained from exhaustive combinations of individual modalities of the force-torque sensor and fingertip sensors. Our results show that the classification method's ability to distinguish between successful and unsuccessful task attempts depends on both the type of manipulation task and the subset of haptic modalities used to train and test the classification method.Accepted manuscrip

    Force-Torque Sensing in Robotics

    Get PDF
    Being able to perform dynamic motions repeatably and reliably is an active research topic. The present thesis aims to contribute to this by improving the accuracy of force-torque sensing in robots. It focuses primarily on six axis force-torque sensors, although other sources of force-torque sensing are explored. Force sensing technologies, calibration procedures of these sensors and the use of force-torque sensing in robotics are described with the aim to familiarize the reader with the problem to solve. The problem is tackled in two ways: improving the accuracy of six axis force-torque sensors and exploring the use of tactile sensor arrays as force-torque sensors. The contributions of this thesis are : the development of the Model Based In situ calibration method for improving measurements of sensors already mounted on robots and the improvement in performance of the robot as a consequence; the design of a calibration device to improve the reliability and speed of calibration; and the improvement of force sensing information of a capacitive tactile array and its use on a robot as force-torque information source. The developed algorithms were tested on the humanoid robotic platform iCub

    Fingertip Fiber Optical Tactile Array with Two-Level Spring Structure

    Get PDF
    Tactile perception is a feature benefiting reliable grasping and manipulation. This paper presents the design of an integrated fingertip force sensor employing an optical fiber based approach where applied forces modulate light intensity. The proposed sensor system is developed to support grasping of a broad range of objects, including those that are hard as well those that are soft. The sensor system is comprised of four sensing elements forming a tactile array integrated with the tip of a finger. We investigate the design configuration of a separate force sensing element with the aim to improve its measurement range. The force measurement of a single tactile element is based on a two-level displacement that is achieved thanks to a hybrid sensing structure made up of a stiff linear and flexible ortho-planar spring. An important outcome of this paper is a miniature tactile fingertip sensor that is capable of perceiving light contact, typically occurring during the initial stages of a grasp, as well as measuring higher forces, commonly present during tight grasps

    Temperature compensated tactile sensing using MOSFET with P(VDF-TrFE)/BaTiO3 capacitor as extended gate

    Get PDF
    This work presents Poly(vinylidene fluoride – trifluoroethylene))/Barium Titanate (P(VDF-TrFE)-BT) nanocomposite based touch sensors tightly coupled with MOSFET devices in extended gate configuration. The P(VDF-TrFE)-BT nanocomposite exploits the distinct piezo and pyroelectric properties of P(VDF-TrFE) polymer matrix and BT fillers to suppress the temperature response when force and temperature are varied simultaneously. The reasons for this unique feature have been established through structural and electrical characterization of nanocomposite. The proposed touch sensor was tested over a wide range of force/pressure (0-4N)/(0-364 Pa) and temperature (26-70°C) with almost linear response. The sensitivity towards force/pressure and temperature sensor are 670 mV/N/7.36 mV/Pa and 15.34 mV/°C respectively. With this modified touch sensing capability, the proposed sensors will open new direction for tactile sensing in robotic applications
    corecore