45,664 research outputs found

    Visual analytics for supply network management: system design and evaluation

    Full text link
    We propose a visual analytic system to augment and enhance decision-making processes of supply chain managers. Several design requirements drive the development of our integrated architecture and lead to three primary capabilities of our system prototype. First, a visual analytic system must integrate various relevant views and perspectives that highlight different structural aspects of a supply network. Second, the system must deliver required information on-demand and update the visual representation via user-initiated interactions. Third, the system must provide both descriptive and predictive analytic functions for managers to gain contingency intelligence. Based on these capabilities we implement an interactive web-based visual analytic system. Our system enables managers to interactively apply visual encodings based on different node and edge attributes to facilitate mental map matching between abstract attributes and visual elements. Grounded in cognitive fit theory, we demonstrate that an interactive visual system that dynamically adjusts visual representations to the decision environment can significantly enhance decision-making processes in a supply network setting. We conduct multi-stage evaluation sessions with prototypical users that collectively confirm the value of our system. Our results indicate a positive reaction to our system. We conclude with implications and future research opportunities.The authors would like to thank the participants of the 2015 Businessvis Workshop at IEEE VIS, Prof. Benoit Montreuil, and Dr. Driss Hakimi for their valuable feedback on an earlier version of the software; Prof. Manpreet Hora for assisting with and Georgia Tech graduate students for participating in the evaluation sessions; and the two anonymous reviewers for their detailed comments and suggestions. The study was in part supported by the Tennenbaum Institute at Georgia Tech Award # K9305. (K9305 - Tennenbaum Institute at Georgia Tech Award)Accepted manuscrip

    Visualizing the dynamics of London's bicycle hire scheme

    Get PDF
    Visualizing flows between origins and destinations can be straightforward when dealing with small numbers of journeys or simple geographies. Representing flows as lines embedded in geographic space has commonly been used to map transport flows, especially when geographic patterns are important as they are when characterising cities or managing transportation. However, for larger numbers of flows, this approach requires careful design to avoid problems of occlusion, salience bias and information overload. Driven by the requirements identified by users and managers of the London Bicycle Hire scheme we present three methods of representation of bicycle hire use and travel patterns. Flow maps with curved flow symbols are used to show overviews in flow structures. Gridded views of docking station location that preserve geographic relationships are used to explore docking station status over space and time in a graphically efficient manner. Origin-Destination maps that visualise the OD matrix directly while maintaining geographic context are used to provide visual details on demand. We use these approaches to identify changes in travel behaviour over space and time, to aid station rebalancing and to provide a framework for incorporating travel modelling and simulation

    Fast filtering and animation of large dynamic networks

    Full text link
    Detecting and visualizing what are the most relevant changes in an evolving network is an open challenge in several domains. We present a fast algorithm that filters subsets of the strongest nodes and edges representing an evolving weighted graph and visualize it by either creating a movie, or by streaming it to an interactive network visualization tool. The algorithm is an approximation of exponential sliding time-window that scales linearly with the number of interactions. We compare the algorithm against rectangular and exponential sliding time-window methods. Our network filtering algorithm: i) captures persistent trends in the structure of dynamic weighted networks, ii) smoothens transitions between the snapshots of dynamic network, and iii) uses limited memory and processor time. The algorithm is publicly available as open-source software.Comment: 6 figures, 2 table
    corecore