988 research outputs found

    Sparse Fault-Tolerant BFS Trees

    Full text link
    This paper addresses the problem of designing a sparse {\em fault-tolerant} BFS tree, or {\em FT-BFS tree} for short, namely, a sparse subgraph TT of the given network GG such that subsequent to the failure of a single edge or vertex, the surviving part TT' of TT still contains a BFS spanning tree for (the surviving part of) GG. Our main results are as follows. We present an algorithm that for every nn-vertex graph GG and source node ss constructs a (single edge failure) FT-BFS tree rooted at ss with O(n \cdot \min\{\Depth(s), \sqrt{n}\}) edges, where \Depth(s) is the depth of the BFS tree rooted at ss. This result is complemented by a matching lower bound, showing that there exist nn-vertex graphs with a source node ss for which any edge (or vertex) FT-BFS tree rooted at ss has Ω(n3/2)\Omega(n^{3/2}) edges. We then consider {\em fault-tolerant multi-source BFS trees}, or {\em FT-MBFS trees} for short, aiming to provide (following a failure) a BFS tree rooted at each source sSs\in S for some subset of sources SVS\subseteq V. Again, tight bounds are provided, showing that there exists a poly-time algorithm that for every nn-vertex graph and source set SVS \subseteq V of size σ\sigma constructs a (single failure) FT-MBFS tree T(S)T^*(S) from each source siSs_i \in S, with O(σn3/2)O(\sqrt{\sigma} \cdot n^{3/2}) edges, and on the other hand there exist nn-vertex graphs with source sets SVS \subseteq V of cardinality σ\sigma, on which any FT-MBFS tree from SS has Ω(σn3/2)\Omega(\sqrt{\sigma}\cdot n^{3/2}) edges. Finally, we propose an O(logn)O(\log n) approximation algorithm for constructing FT-BFS and FT-MBFS structures. The latter is complemented by a hardness result stating that there exists no Ω(logn)\Omega(\log n) approximation algorithm for these problems under standard complexity assumptions

    Space and Time Efficient Parallel Graph Decomposition, Clustering, and Diameter Approximation

    Full text link
    We develop a novel parallel decomposition strategy for unweighted, undirected graphs, based on growing disjoint connected clusters from batches of centers progressively selected from yet uncovered nodes. With respect to similar previous decompositions, our strategy exercises a tighter control on both the number of clusters and their maximum radius. We present two important applications of our parallel graph decomposition: (1) kk-center clustering approximation; and (2) diameter approximation. In both cases, we obtain algorithms which feature a polylogarithmic approximation factor and are amenable to a distributed implementation that is geared for massive (long-diameter) graphs. The total space needed for the computation is linear in the problem size, and the parallel depth is substantially sublinear in the diameter for graphs with low doubling dimension. To the best of our knowledge, ours are the first parallel approximations for these problems which achieve sub-diameter parallel time, for a relevant class of graphs, using only linear space. Besides the theoretical guarantees, our algorithms allow for a very simple implementation on clustered architectures: we report on extensive experiments which demonstrate their effectiveness and efficiency on large graphs as compared to alternative known approaches.Comment: 14 page

    The Traveling Salesman Problem: Low-Dimensionality Implies a Polynomial Time Approximation Scheme

    Full text link
    The Traveling Salesman Problem (TSP) is among the most famous NP-hard optimization problems. We design for this problem a randomized polynomial-time algorithm that computes a (1+eps)-approximation to the optimal tour, for any fixed eps>0, in TSP instances that form an arbitrary metric space with bounded intrinsic dimension. The celebrated results of Arora (A-98) and Mitchell (M-99) prove that the above result holds in the special case of TSP in a fixed-dimensional Euclidean space. Thus, our algorithm demonstrates that the algorithmic tractability of metric TSP depends on the dimensionality of the space and not on its specific geometry. This result resolves a problem that has been open since the quasi-polynomial time algorithm of Talwar (T-04)

    Treewidth distance on phylogenetic trees

    Get PDF
    In this article we study the treewidth of the display graph, an auxiliary graph structure obtained from the fusion of phylogenetic (i.e., evolutionary) trees at their leaves. Earlier work has shown that the treewidth of the display graph is bounded if the trees are in some formal sense topologically similar. Here we further expand upon this relationship. We analyse a number of reduction rules, commonly used in the phylogenetics literature to obtain fixed parameter tractable algorithms. In some cases (the subtree reduction) the reduction rules behave similarly with respect to treewidth, while others (the cluster reduction) behave very differently, and the behaviour of the chain reduction is particularly intriguing because of its link with graph separators and forbidden minors. We also show that the gap between treewidth and Tree Bisection and Reconnect (TBR) distance can be infinitely large, and that unlike, for example, planar graphs the treewidth of the display graph can be as much as linear in its number of vertices. A number of other auxiliary results are given. We conclude with a discussion and list a number of open problems

    Shorter Labeling Schemes for Planar Graphs

    Get PDF
    An \emph{adjacency labeling scheme} for a given class of graphs is an algorithm that for every graph GG from the class, assigns bit strings (labels) to vertices of GG so that for any two vertices u,vu,v, whether uu and vv are adjacent can be determined by a fixed procedure that examines only their labels. It is known that planar graphs with nn vertices admit a labeling scheme with labels of bit length (2+o(1))logn(2+o(1))\log{n}. In this work we improve this bound by designing a labeling scheme with labels of bit length (43+o(1))logn(\frac{4}{3}+o(1))\log{n}. In graph-theoretical terms, this implies an explicit construction of a graph on n4/3+o(1)n^{4/3+o(1)} vertices that contains all planar graphs on nn vertices as induced subgraphs, improving the previous best upper bound of n2+o(1)n^{2+o(1)}. Our scheme generalizes to graphs of bounded Euler genus with the same label length up to a second-order term. All the labels of the input graph can be computed in polynomial time, while adjacency can be decided from the labels in constant time
    corecore