294 research outputs found

    On some intriguing problems in Hamiltonian graph theory -- A survey

    Get PDF
    We survey results and open problems in Hamiltonian graph theory centred around three themes: regular graphs, tt-tough graphs, and claw-free graphs

    Spectral Fundamentals and Characterizations of Signed Directed Graphs

    Full text link
    The spectral properties of signed directed graphs, which may be naturally obtained by assigning a sign to each edge of a directed graph, have received substantially less attention than those of their undirected and/or unsigned counterparts. To represent such signed directed graphs, we use a striking equivalence to T6\mathbb{T}_6-gain graphs to formulate a Hermitian adjacency matrix, whose entries are the unit Eisenstein integers exp(kπi/3),\exp(k\pi i/3), kZ6.k\in \mathbb{Z}_6. Many well-known results, such as (gain) switching and eigenvalue interlacing, naturally carry over to this paradigm. We show that non-empty signed directed graphs whose spectra occur uniquely, up to isomorphism, do not exist, but we provide several infinite families whose spectra occur uniquely up to switching equivalence. Intermediate results include a classification of all signed digraphs with rank 2,32,3, and a deep discussion of signed digraphs with extremely few (1 or 2) non-negative (eq. non-positive) eigenvalues

    Spanning trees without adjacent vertices of degree 2

    Full text link
    Albertson, Berman, Hutchinson, and Thomassen showed in 1990 that there exist highly connected graphs in which every spanning tree contains vertices of degree 2. Using a result of Alon and Wormald, we show that there exists a natural number dd such that every graph of minimum degree at least dd contains a spanning tree without adjacent vertices of degree 2. Moreover, we prove that every graph with minimum degree at least 3 has a spanning tree without three consecutive vertices of degree 2

    Mini-Workshop: Positional Games

    Get PDF
    Positional games is one of rapidly developing subjects of modern combinatorics, researching two player perfect information games of combinatorial nature, ranging from recreational games like Tic-Tac-Toe to purely abstract games played on graphs and hypergraphs. Though defined usually in game theoretic terms, the subject has a distinct combinatorial flavor and boasts strong mutual connections with discrete probability, Ramsey theory and randomized algorithms. This mini-workshop was dedicated to summarizing the recent progress in the subject, to indicating possible directions of future developments, and to fostering collaboration between researchers working in various, sometimes apparently distinct directions

    Graphs and subgraphs with bounded degree

    Get PDF
    "The topology of a network (such as a telecommunications, multiprocessor, or local area network, to name just a few) is usually modelled by a graph in which vertices represent 'nodes' (stations or processors) while undirected or directed edges stand for 'links' or other types of connections, physical or virtual. A cycle that contains every vertex of a graph is called a hamiltonian cycle and a graph which contains a hamiltonian cycle is called a hamiltonian graph. The problem of the existence of a hamiltonian cycle is closely related to the well known problem of a travelling salesman. These problems are NP-complete and NP-hard, respectively. While some necessary and sufficient conditions are known, to date, no practical characterization of hamiltonian graphs has been found. There are several ways to generalize the notion of a hamiltonian cycle. In this thesis we make original contributions in two of them, namely k-walks and r-trestles." --Abstract.Doctor of Philosoph

    Eigenvector Synchronization, Graph Rigidity and the Molecule Problem

    Full text link
    The graph realization problem has received a great deal of attention in recent years, due to its importance in applications such as wireless sensor networks and structural biology. In this paper, we extend on previous work and propose the 3D-ASAP algorithm, for the graph realization problem in R3\mathbb{R}^3, given a sparse and noisy set of distance measurements. 3D-ASAP is a divide and conquer, non-incremental and non-iterative algorithm, which integrates local distance information into a global structure determination. Our approach starts with identifying, for every node, a subgraph of its 1-hop neighborhood graph, which can be accurately embedded in its own coordinate system. In the noise-free case, the computed coordinates of the sensors in each patch must agree with their global positioning up to some unknown rigid motion, that is, up to translation, rotation and possibly reflection. In other words, to every patch there corresponds an element of the Euclidean group Euc(3) of rigid transformations in R3\mathbb{R}^3, and the goal is to estimate the group elements that will properly align all the patches in a globally consistent way. Furthermore, 3D-ASAP successfully incorporates information specific to the molecule problem in structural biology, in particular information on known substructures and their orientation. In addition, we also propose 3D-SP-ASAP, a faster version of 3D-ASAP, which uses a spectral partitioning algorithm as a preprocessing step for dividing the initial graph into smaller subgraphs. Our extensive numerical simulations show that 3D-ASAP and 3D-SP-ASAP are very robust to high levels of noise in the measured distances and to sparse connectivity in the measurement graph, and compare favorably to similar state-of-the art localization algorithms.Comment: 49 pages, 8 figure
    corecore