15,290 research outputs found

    Graph classes and forbidden patterns on three vertices

    Full text link
    This paper deals with graph classes characterization and recognition. A popular way to characterize a graph class is to list a minimal set of forbidden induced subgraphs. Unfortunately this strategy usually does not lead to an efficient recognition algorithm. On the other hand, many graph classes can be efficiently recognized by techniques based on some interesting orderings of the nodes, such as the ones given by traversals. We study specifically graph classes that have an ordering avoiding some ordered structures. More precisely, we consider what we call patterns on three nodes, and the recognition complexity of the associated classes. In this domain, there are two key previous works. Damashke started the study of the classes defined by forbidden patterns, a set that contains interval, chordal and bipartite graphs among others. On the algorithmic side, Hell, Mohar and Rafiey proved that any class defined by a set of forbidden patterns can be recognized in polynomial time. We improve on these two works, by characterizing systematically all the classes defined sets of forbidden patterns (on three nodes), and proving that among the 23 different classes (up to complementation) that we find, 21 can actually be recognized in linear time. Beyond this result, we consider that this type of characterization is very useful, leads to a rich structure of classes, and generates a lot of open questions worth investigating.Comment: Third version version. 38 page

    Minimal classes of graphs of unbounded clique-width defined by finitely many forbidden induced subgraphs

    Full text link
    We discover new hereditary classes of graphs that are minimal (with respect to set inclusion) of unbounded clique-width. The new examples include split permutation graphs and bichain graphs. Each of these classes is characterised by a finite list of minimal forbidden induced subgraphs. These, therefore, disprove a conjecture due to Daligault, Rao and Thomasse from 2010 claiming that all such minimal classes must be defined by infinitely many forbidden induced subgraphs. In the same paper, Daligault, Rao and Thomasse make another conjecture that every hereditary class of unbounded clique-width must contain a labelled infinite antichain. We show that the two example classes we consider here satisfy this conjecture. Indeed, they each contain a canonical labelled infinite antichain, which leads us to propose a stronger conjecture: that every hereditary class of graphs that is minimal of unbounded clique-width contains a canonical labelled infinite antichain.Comment: 17 pages, 7 figure

    Pairwise Compatibility Graphs (Invited Talk)

    Get PDF
    Pairwise Compatibility Graphs (PCG) are graphs introduced in relation to the biological problem of reconstructing phylogenetic trees. Without demanding to be exhaustive, in this note we take a quick look at what is known in the literature for these graphs. The evolutionary history of a set of organisms is usually represented by a tree-like structure called phylogenetic tree, where the leaves are the known species and the internal nodes are the possible ancestors that might have led, through evolution, to this set of species. Edges are evolutionary relationships between species, while the edge weights represent evolutionary distances among species (evolutionary times). The phylogenetic tree reconstruction problem consists in finding a fully labeled phylogenetic tree that'best' explains the evolution of given species, where'best' means that it optimizes a specific target function. Tree reconstruction problem is proved to be NP-hard under many criteria of optimality, so the performance of the heuristics for this problem is usually experimentally evaluated by comparing the output trees with the partial trees that are unanimously recognized as sure by biologists. But real data consist of a huge number of species, and it is unfeasible to compare trees with such a number of leaves, so it is common to exploit sample techniques. The idea is to find efficient ways to sample subsets of species from a large set in order to test the heuristics on the smaller sub-trees induced by the sample. The constraints on the sample attempt to ensure that the behavior of the heuristics will not be biased by the fact it is applied on the sample instead of on the whole tree. Since very close or very distant taxa can create problems for phylogenetic reconstruction heuristics [9], the following definition of Pairwise Compatibility Graphs [12] appears natura

    Total Domishold Graphs: a Generalization of Threshold Graphs, with Connections to Threshold Hypergraphs

    Full text link
    A total dominating set in a graph is a set of vertices such that every vertex of the graph has a neighbor in the set. We introduce and study graphs that admit non-negative real weights associated to their vertices such that a set of vertices is a total dominating set if and only if the sum of the corresponding weights exceeds a certain threshold. We show that these graphs, which we call total domishold graphs, form a non-hereditary class of graphs properly containing the classes of threshold graphs and the complements of domishold graphs, and are closely related to threshold Boolean functions and threshold hypergraphs. We present a polynomial time recognition algorithm of total domishold graphs, and characterize graphs in which the above property holds in a hereditary sense. Our characterization is obtained by studying a new family of hypergraphs, defined similarly as the Sperner hypergraphs, which may be of independent interest.Comment: 19 pages, 1 figur

    Meta-Kernelization using Well-Structured Modulators

    Get PDF
    Kernelization investigates exact preprocessing algorithms with performance guarantees. The most prevalent type of parameters used in kernelization is the solution size for optimization problems; however, also structural parameters have been successfully used to obtain polynomial kernels for a wide range of problems. Many of these parameters can be defined as the size of a smallest modulator of the given graph into a fixed graph class (i.e., a set of vertices whose deletion puts the graph into the graph class). Such parameters admit the construction of polynomial kernels even when the solution size is large or not applicable. This work follows up on the research on meta-kernelization frameworks in terms of structural parameters. We develop a class of parameters which are based on a more general view on modulators: instead of size, the parameters employ a combination of rank-width and split decompositions to measure structure inside the modulator. This allows us to lift kernelization results from modulator-size to more general parameters, hence providing smaller kernels. We show (i) how such large but well-structured modulators can be efficiently approximated, (ii) how they can be used to obtain polynomial kernels for any graph problem expressible in Monadic Second Order logic, and (iii) how they allow the extension of previous results in the area of structural meta-kernelization
    • …
    corecore