14 research outputs found

    Tracking Biped Motion in Pervasive Environment

    Get PDF
    Textiles are ubiquitous to humans since ages. Transistors made of silicon have made a deep impact in modern industry. A new field of research called wearable electronics integrates both these worlds to provide intelligent new services. Based on modern technologies of textile manufacturing, a carpet is embedded with a network of computing devices. One of their applications is to sense, when someone walks over them. This carpet was used to track the path a person took on his walk. When a person steps on the carpet, embedded sensors in the carpet get activated. These activations are stored at a monitoring PC as a log file. This data is processed and carefully viewed by data mining algorithms to identify hidden patterns that reveal the trails of the subject on his motion over the carpet. Different methods for validating the data mining algorithms are presented. These methods are perfected to produce an ideal reference in a format that can be directly compared with the estimated results of the algorithms. The evaluation results show a better performance for the new approach compared to the state-of-the-art technologies. Veracious testing, discussions, suggestions and their impact after implementation, are discussed in detail. The concepts used in the data mining algorithms are structurally sound and maintainable. Suggestions are given for further work on this system as whole. The footsteps of the person walking on the carpet are identified. The trajectory of walk is traced. The carpet can be used in a variety of domains. Rich examples on usage, assisted with augmented literature conclude this work

    Floor sensor development using signal scavenging for personnel detection system

    Get PDF
    "July 2010.""A Thesis Presented to The Faculty of the Graduate School At the University of Missouri--Columbia In Partial Fulfillment Of the Requirements for the Degree Master of Science."Thesis supervisor: Dr. Harry Tyrer.Falls have been a major cause of injuries likes fractures, head trauma in elder people. In many cases, these injuries have been fatal. This being a major concern of the Alzheimer's Association, a 'Smart Carpet' to detect a person's fall and accordingly generate an alarm was important. We developed faux floors and an actual floor for testing and demonstration to detect motion. We used a novel technique of signal scavenging to detect presence of the person. Aluminum foils were used as sensors as they were conducive to the applied pressure on them. Rigorous tests and experiments were performed on the faux floor sized 1m x 1m (3feet x 3feet) and 2.1m x 1m (7feet x 3feet) using these aluminum sensors. The noisy output pattern of the aluminum sensor was signal conditioned and converted into digital format using Op-Amps. The digital signal was later interfaced with a micro-controller unit and displayed onto a PC. Graphical analysis with ROC space and personal experience with utilization of the faux floor system gave us confidence to develop a real floor of the size 3.6m x 3.6m (12feet x 12feet). The results obtained on the full floor were beyond the expectations. Previously observed problems like cross-talk, noise interference and abrupt output behavior of the sensor system were avoided with careful manufacturing of carpet and earthing. With the development of the full floor, we have created a prototype which has high reliability and accuracy to detect motion and can be extensively used for further research.Includes bibliographical references (pages 57-59)

    Infant Cry Signal Processing, Analysis, and Classification with Artificial Neural Networks

    Get PDF
    As a special type of speech and environmental sound, infant cry has been a growing research area covering infant cry reason classification, pathological infant cry identification, and infant cry detection in the past two decades. In this dissertation, we build a new dataset, explore new feature extraction methods, and propose novel classification approaches, to improve the infant cry classification accuracy and identify diseases by learning infant cry signals. We propose a method through generating weighted prosodic features combined with acoustic features for a deep learning model to improve the performance of asphyxiated infant cry identification. The combined feature matrix captures the diversity of variations within infant cries and the result outperforms all other related studies on asphyxiated baby crying classification. We propose a non-invasive fast method of using infant cry signals with convolutional neural network (CNN) based age classification to diagnose the abnormality of infant vocal tract development as early as 4-month age. Experiments discover the pattern and tendency of the vocal tract changes and predict the abnormality of infant vocal tract by classifying the cry signals into younger age category. We propose an approach of generating hybrid feature set and using prior knowledge in a multi-stage CNNs model for robust infant sound classification. The dominant and auxiliary features within the set are beneficial to enlarge the coverage as well as keeping a good resolution for modeling the diversity of variations within infant sound and the experimental results give encouraging improvements on two relative databases. We propose an approach of graph convolutional network (GCN) with transfer learning for robust infant cry reason classification. Non-fully connected graphs based on the similarities among the relevant nodes are built to consider the short-term and long-term effects of infant cry signals related to inner-class and inter-class messages. With as limited as 20% of labeled training data, our model outperforms that of the CNN model with 80% labeled training data in both supervised and semi-supervised settings. Lastly, we apply mel-spectrogram decomposition to infant cry classification and propose a fusion method to further improve the infant cry classification performance

    Three-dimensional point-cloud room model in room acoustics simulations

    Get PDF

    Towards Robust Bipedal Locomotion:From Simple Models To Full-Body Compliance

    Get PDF
    Thanks to better actuator technologies and control algorithms, humanoid robots to date can perform a wide range of locomotion activities outside lab environments. These robots face various control challenges like high dimensionality, contact switches during locomotion and a floating-base nature which makes them fall all the time. A rich set of sensory inputs and a high-bandwidth actuation are often needed to ensure fast and effective reactions to unforeseen conditions, e.g., terrain variations, external pushes, slippages, unknown payloads, etc. State of the art technologies today seem to provide such valuable hardware components. However, regarding software, there is plenty of room for improvement. Locomotion planning and control problems are often treated separately in conventional humanoid control algorithms. The control challenges mentioned above are probably the main reason for such separation. Here, planning refers to the process of finding consistent open-loop trajectories, which may take arbitrarily long computations off-line. Control, on the other hand, should be done very fast online to ensure stability. In this thesis, we want to link planning and control problems again and enable for online trajectory modification in a meaningful way. First, we propose a new way of describing robot geometries like molecules which breaks the complexity of conventional models. We use this technique and derive a planning algorithm that is fast enough to be used online for multi-contact motion planning. Similarly, we derive 3LP, a simplified linear three-mass model for bipedal walking, which offers orders of magnitude faster computations than full mechanical models. Next, we focus more on walking and use the 3LP model to formulate online control algorithms based on the foot-stepping strategy. The method is based on model predictive control, however, we also propose a faster controller with time-projection that demonstrates a close performance without numerical optimizations. We also deploy an efficient implementation of inverse dynamics together with advanced sensor fusion and actuator control algorithms to ensure a precise and compliant tracking of the simplified 3LP trajectories. Extensive simulations and hardware experiments on COMAN robot demonstrate effectiveness and strengths of our method. This thesis goes beyond humanoid walking applications. We further use the developed modeling tools to analyze and understand principles of human locomotion. Our 3LP model can describe the exchange of energy between human limbs in walking to some extent. We use this property to propose a metabolic-cost model of human walking which successfully describes trends in various conditions. The intrinsic power of the 3LP model to generate walking gaits in all these conditions makes it a handy solution for walking control and gait analysis, despite being yet a simplified model. To fill the reality gap, finally, we propose a kinematic conversion method that takes 3LP trajectories as input and generates more human-like postures. Using this method, the 3LP model, and the time-projecting controller, we introduce a graphical user interface in the end to simulate periodic and transient human-like walking conditions. We hope to use this combination in future to produce faster and more human-like walking gaits, possibly with more capable humanoid robots

    Objective assessment of speech intelligibility.

    Get PDF
    This thesis addresses the topic of objective speech intelligibility assessment. Speech intelligibility is becoming an important issue due most possibly to the rapid growth in digital communication systems in recent decades; as well as the increasing demand for security-based applications where intelligibility, rather than the overall quality, is the priority. Afterall, the loss of intelligibility means that communication does not exist. This research sets out to investigate the potential of automatic speech recognition (ASR) in intelligibility assessment, the motivation being the obvious link between word recognition and intelligibility. As a pre-cursor, quality measures are first considered since intelligibility is an attribute encompassed in overall quality. Here, 9 prominent quality measures including the state-of-the-art Perceptual Evaluation of Speech Quality (PESQ) are assessed. A large range of degradations are considered including additive noise and those introduced by coding and enhancement schemes. Experimental results show that apart from Weighted Spectral Slope (WSS), generally the quality scores from all other quality measures considered here correlate poorly with intelligibility. Poor correlations are observed especially when dealing with speech-like noises and degradations introduced by enhancement processes. ASR is then considered where various word recognition statistics, namely word accuracy, percentage correct, deletion, substitution and insertion are assessed as potential intelligibility measure. One critical contribution is the observation that there are links between different ASR statistics and different forms of degradation. Such links enable suitable statistics to be chosen for intelligibility assessment in different applications. In overall word accuracy from an ASR system trained on clean signals has the highest correlation with intelligibility. However, as is the case with quality measures, none of the ASR scores correlate well in the context of enhancement schemes since such processes are known to improve machine-based scores without necessarily improving intelligibility. This demonstrates the limitation of ASR in intelligibility assessment. As an extension to word modelling in ASR, one major contribution of this work relates to the novel use of a data-driven (DD) classifier in this context. The classifier is trained on intelligibility information and its output scores relate directly to intelligibility rather than indirectly through quality or ASR scores as in earlier attempts. A critical obstacle with the development of such a DD classifier is establishing the large amount of ground truth necessary for training. This leads to the next significant contribution, namely the proposal of a convenient strategy to generate potentially unlimited amounts of synthetic ground truth based on a well-supported hypothesis that speech processings rarely improve intelligibility. Subsequent contributions include the search for good features that could enhance classification accuracy. Scores given by quality measures and ASR are indicative of intelligibility hence could serve as potential features for the data-driven intelligibility classifier. Both are in investigated in this research and results show ASR-based features to be superior. A final contribution is a novel feature set based on the concept of anchor models where each anchor represents a chosen degradation. Signal intelligibility is characterised by the similarity between the degradation under test and a cohort of degradation anchors. The anchoring feature set leads to an average classification accuracy of 88% with synthetic ground truth and 82% with human ground truth evaluation sets. The latter compares favourably with 69% achieved by WSS (the best quality measure) and 68% by word accuracy from a clean-trained ASR (the best ASR-based measure) which are assessed on identical test sets

    Proceedings of the 7th Sound and Music Computing Conference

    Get PDF
    Proceedings of the SMC2010 - 7th Sound and Music Computing Conference, July 21st - July 24th 2010

    Humanoid Robots

    Get PDF
    For many years, the human being has been trying, in all ways, to recreate the complex mechanisms that form the human body. Such task is extremely complicated and the results are not totally satisfactory. However, with increasing technological advances based on theoretical and experimental researches, man gets, in a way, to copy or to imitate some systems of the human body. These researches not only intended to create humanoid robots, great part of them constituting autonomous systems, but also, in some way, to offer a higher knowledge of the systems that form the human body, objectifying possible applications in the technology of rehabilitation of human beings, gathering in a whole studies related not only to Robotics, but also to Biomechanics, Biomimmetics, Cybernetics, among other areas. This book presents a series of researches inspired by this ideal, carried through by various researchers worldwide, looking for to analyze and to discuss diverse subjects related to humanoid robots. The presented contributions explore aspects about robotic hands, learning, language, vision and locomotion
    corecore