3,024 research outputs found

    Art of singular vectors and universal adversarial perturbations

    Full text link
    Vulnerability of Deep Neural Networks (DNNs) to adversarial attacks has been attracting a lot of attention in recent studies. It has been shown that for many state of the art DNNs performing image classification there exist universal adversarial perturbations --- image-agnostic perturbations mere addition of which to natural images with high probability leads to their misclassification. In this work we propose a new algorithm for constructing such universal perturbations. Our approach is based on computing the so-called (p,q)(p, q)-singular vectors of the Jacobian matrices of hidden layers of a network. Resulting perturbations present interesting visual patterns, and by using only 64 images we were able to construct universal perturbations with more than 60 \% fooling rate on the dataset consisting of 50000 images. We also investigate a correlation between the maximal singular value of the Jacobian matrix and the fooling rate of the corresponding singular vector, and show that the constructed perturbations generalize across networks.Comment: Submitted to CVPR 201

    Defense against Universal Adversarial Perturbations

    Full text link
    Recent advances in Deep Learning show the existence of image-agnostic quasi-imperceptible perturbations that when applied to `any' image can fool a state-of-the-art network classifier to change its prediction about the image label. These `Universal Adversarial Perturbations' pose a serious threat to the success of Deep Learning in practice. We present the first dedicated framework to effectively defend the networks against such perturbations. Our approach learns a Perturbation Rectifying Network (PRN) as `pre-input' layers to a targeted model, such that the targeted model needs no modification. The PRN is learned from real and synthetic image-agnostic perturbations, where an efficient method to compute the latter is also proposed. A perturbation detector is separately trained on the Discrete Cosine Transform of the input-output difference of the PRN. A query image is first passed through the PRN and verified by the detector. If a perturbation is detected, the output of the PRN is used for label prediction instead of the actual image. A rigorous evaluation shows that our framework can defend the network classifiers against unseen adversarial perturbations in the real-world scenarios with up to 97.5% success rate. The PRN also generalizes well in the sense that training for one targeted network defends another network with a comparable success rate.Comment: Accepted in IEEE CVPR 201
    • …
    corecore