190 research outputs found

    Thoughts for Foods: Imaging Technology Opportunities for Monitoring and Measuring Food Quality

    Get PDF
    In recent decades, the quality and safety of fruits, vegetables, cereals, meats, milk, and their derivatives from processed foods have become a serious issue for consumers in developed as well as developing countries. Undoubtedly, the traditional methods of inspecting and ensuring quality that depends on the human factor, some mechanical and chemical methods, have proven beyond any doubt their inability to achieve food quality and safety, and thus a failure to achieve food security. With growing attention on human health, the standards of food safety and quality are continuously being improved through advanced technology applications that depend on artificial intelligence tools to monitor the quality and safety of food. One of the most important of these applications is imaging technology. A brief discussion in this chapter on the utilize of multiple imaging systems based on all different bands of the electromagnetic spectrum as a principal source of various imaging systems. As well as methods of analyzing and reading images to build intelligence and non-destructive systems for monitoring and measuring the quality of foods

    Advanced Sensors for Real-Time Monitoring Applications

    Get PDF
    It is impossible to imagine the modern world without sensors, or without real-time information about almost everything—from local temperature to material composition and health parameters. We sense, measure, and process data and act accordingly all the time. In fact, real-time monitoring and information is key to a successful business, an assistant in life-saving decisions that healthcare professionals make, and a tool in research that could revolutionize the future. To ensure that sensors address the rapidly developing needs of various areas of our lives and activities, scientists, researchers, manufacturers, and end-users have established an efficient dialogue so that the newest technological achievements in all aspects of real-time sensing can be implemented for the benefit of the wider community. This book documents some of the results of such a dialogue and reports on advances in sensors and sensor systems for existing and emerging real-time monitoring applications

    Food Security Sensing System Using a Waveguide Antenna Microwave Imaging through an Example of an Egg

    No full text
    In this paper, we present a form of food security sensing using a waveguide antenna microwave imaging system through an example of an egg. A waveguide antenna system with a frequency range of 7–13 GHz and a maximum gain of 17.37 dBi was proposed. The maximum scanning area of the waveguide antenna microwave imaging sensing system is 30 × 30 cm2. In order to study the resolution and sensitivity of the waveguide antenna microwave imaging sensing system, the circular and triangular high-k materials (with the same thickness but with different dielectric constants of the materials) were used as the testing sample for observing the microwave images. By using the proposed waveguide antenna microwave imaging sensing system, the high-k materials with different dielectric constants and shapes could be easily sensed. Therefore, the waveguide antenna microwave imaging sensing system could be potentially used for applications in rapid, non-destructive food security sensing. Regarding the example of an egg, the proposed waveguide antenna microwave imaging sensing system could effectively identify the health status of many eggs very quickly. The proposed waveguide antenna microwave imaging sensing system provides a simple, non-destructive, effective, and rapid method for food security applications

    NASA Tech Briefs, September 1990

    Get PDF
    Topics covered include: New Product Ideas; NASA TU Services; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences

    Biosensors for Diagnosis and Monitoring

    Get PDF
    Biosensor technologies have received a great amount of interest in recent decades, and this has especially been the case in recent years due to the health alert caused by the COVID-19 pandemic. The sensor platform market has grown in recent decades, and the COVID-19 outbreak has led to an increase in the demand for home diagnostics and point-of-care systems. With the evolution of biosensor technology towards portable platforms with a lower cost on-site analysis and a rapid selective and sensitive response, a larger market has opened up for this technology. The evolution of biosensor systems has the opportunity to change classic analysis towards real-time and in situ detection systems, with platforms such as point-of-care and wearables as well as implantable sensors to decentralize chemical and biological analysis, thus reducing industrial and medical costs. This book is dedicated to all the research related to biosensor technologies. Reviews, perspective articles, and research articles in different biosensing areas such as wearable sensors, point-of-care platforms, and pathogen detection for biomedical applications as well as environmental monitoring will introduce the reader to these relevant topics. This book is aimed at scientists and professionals working in the field of biosensors and also provides essential knowledge for students who want to enter the field

    LASER Tech Briefs, Spring 1994

    Get PDF
    Topics in this Laser Tech Brief include: Electronic Components and Circuits. Electronic Systems, Physical Sciences, Materials, Mechanics, Fabrication Technology, and books and reports

    Terahertz (THz) biophotonics technology : instrumentation, techniques, and biomedical applications

    Get PDF
    Terahertz (THz) technology has experienced rapid development in the past two decades. Growing numbers of interdisciplinary applications are emerging, including material science, physics, communications, security, as well as biomedicine. THz biophotonics involves studies applying THz photonic technology in biomedicine, which has attracted attention due to the unique features of THz waves, such as the high sensitivity to water, resonance with biomolecules, favourable spatial resolution, capacity to probe the water-biomolecule interactions and non-ionizing photon energy. Despite the great potential, THz biophotonics is still at an early stage of development. There is a lack of standards for instrumentation, measurement protocols, and data analysis which makes it difficult to make comparisons among all the work published. In this article we give a comprehensive review of the key findings which have underpinned research into biomedical applications of THz technology. In particular, we will focus on the advances made in general THz instrumentation and specific THz-based instruments for biomedical applications. We will also discuss the theories describing the interaction between THz light and biomedical samples. We aim to provide an overview of both, basic biomedical research, as well as pre-clinical and clinical applications under investigation. The paper aims to provide a clear picture of the achievements, challenges and future perspectives of THz biophotonics

    Classe de Ciências

    Get PDF
    info:eu-repo/semantics/publishedVersio

    NASA Tech Briefs, October 1988

    Get PDF
    Topics include: New Product Ideas; NASA TU Services; Electronic Components and Circuits; Electronic Systems; Physical Sciences Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences
    • …
    corecore