297 research outputs found

    Noise- and compression-robust biological features for texture classification

    Get PDF
    Texture classification is an important aspect of many digital image processing applications such as surface inspection, content-based image retrieval, and biomedical image analysis. However, noise and compression artifacts in images cause problems for most texture analysis methods. This paper proposes the use of features based on the human visual system for texture classification using a semisupervised, hierarchical approach. The texture feature consists of responses of cells which are found in the visual cortex of higher primates. Classification experiments on different texture libraries indicate that the proposed features obtain a very high classification near 97%. In contrast to other well-established texture analysis methods, the experiments indicate that the proposed features are more robust to various levels of speckle and Gaussian noise. Furthermore, we show that the classification rate of the textures using the presented biologically inspired features is hardly affected by image compression techniques

    Adaptive Analysis and Processing of Structured Multilingual Documents

    Get PDF
    Digital document processing is becoming popular for application to office and library automation, bank and postal services, publishing houses and communication management. In recent years, the demand for tools capable of searching written and spoken sources of multilingual information has increased tremendously, where the bilingual dictionary is one of the important resource to provide the required information. Processing and analysis of bilingual dictionaries brought up the challenges of dealing with many different scripts, some of which are unknown to the designer. A framework is presented to adaptively analyze and process structured multilingual documents, where adaptability is applied to every step. The proposed framework involves: (1) General word-level script identification using Gabor filter. (2) Font classification using the grating cell operator. (3) General word-level style identification using Gaussian mixture model. (4) An adaptable Hindi OCR based on generalized Hausdorff image comparison. (5) Retargetable OCR with automatic training sample creation and its applications to different scripts. (6) Bootstrapping entry segmentation, which segments each page into functional entries for parsing. Experimental results working on different scripts, such as Chinese, Korean, Arabic, Devanagari, and Khmer, demonstrate that the proposed framework can save human efforts significantly by making each phase adaptive

    Engineering data compendium. Human perception and performance. User's guide

    Get PDF
    The concept underlying the Engineering Data Compendium was the product of a research and development program (Integrated Perceptual Information for Designers project) aimed at facilitating the application of basic research findings in human performance to the design and military crew systems. The principal objective was to develop a workable strategy for: (1) identifying and distilling information of potential value to system design from the existing research literature, and (2) presenting this technical information in a way that would aid its accessibility, interpretability, and applicability by systems designers. The present four volumes of the Engineering Data Compendium represent the first implementation of this strategy. This is the first volume, the User's Guide, containing a description of the program and instructions for its use

    The computational magic of the ventral stream: sketch of a theory (and why some deep architectures work).

    Get PDF
    This paper explores the theoretical consequences of a simple assumption: the computational goal of the feedforward path in the ventral stream -- from V1, V2, V4 and to IT -- is to discount image transformations, after learning them during development

    Change blindness: eradication of gestalt strategies

    Get PDF
    Arrays of eight, texture-defined rectangles were used as stimuli in a one-shot change blindness (CB) task where there was a 50% chance that one rectangle would change orientation between two successive presentations separated by an interval. CB was eliminated by cueing the target rectangle in the first stimulus, reduced by cueing in the interval and unaffected by cueing in the second presentation. This supports the idea that a representation was formed that persisted through the interval before being 'overwritten' by the second presentation (Landman et al, 2003 Vision Research 43149–164]. Another possibility is that participants used some kind of grouping or Gestalt strategy. To test this we changed the spatial position of the rectangles in the second presentation by shifting them along imaginary spokes (by ±1 degree) emanating from the central fixation point. There was no significant difference seen in performance between this and the standard task [F(1,4)=2.565, p=0.185]. This may suggest two things: (i) Gestalt grouping is not used as a strategy in these tasks, and (ii) it gives further weight to the argument that objects may be stored and retrieved from a pre-attentional store during this task

    Ocular higher-order aberrations and visual performance

    Get PDF
    Since adaptive optics was first used to correct the monochromatic aberrations of the eye over a decade ago there has been considerable interest in correcting the ocular aberrations beyond defocus and astigmatism. In order to understand the prospective benefits of correcting these higher-order aberrations it is important to study their effect on visual performance. From a clinical perspective it is important to know how different types of aberration can affect visual performance so that wavefront measurements can be better understood. Visual performance is determined by a combination of optical and neural factors. It is important to consider how degradations in the optical quality of the eye can impact the neural processes involved in visual tasks such as object recognition. In this thesis we present a study of the effects of three types of aberration, defocus, coma and secondary astigmatism, on letter recognition and reading performance. In the course of this work we also characterise the repeatability of the Zywave aberrometer, which we used to measure our subjects' ocular wavefronts. We use stimuli that have these aberrations applied in their rendering to examine the differences between these aberrations and how they differ with respect to the visual task. We find that secondary astigmatism causes the largest impairment to both letter recognition and reading performance, followed by defocus. Coma causes comparatively smaller degradations to performance but its effect is different depending on the visual task. We can predict the reduction in performance based on a simple cross-correlation model of letter confusability. The relationship between these predictions and the experimental results are the same for all three aberrations, in the case of single letter recognition. In reading however, the relationship is different for coma. We suggest that coma causes lateral masking effects and may additionally disrupt the planning of eye movements. Coma slows reading, but does not specifically impair word identification whereas defocus and secondary astigmatism do. We attribute disruptions in word identification to the dramatic effects defocus and secondary astigmatism have on the form of a letter

    Engineering data compendium. Human perception and performance, volume 3

    Get PDF
    The concept underlying the Engineering Data Compendium was the product of a research and development program (Integrated Perceptual Information for Designers project) aimed at facilitating the application of basic research findings in human performance to the design of military crew systems. The principal objective was to develop a workable strategy for: (1) identifying and distilling information of potential value to system design from existing research literature, and (2) presenting this technical information in a way that would aid its accessibility, interpretability, and applicability by system designers. The present four volumes of the Engineering Data Compendium represent the first implementation of this strategy. This is Volume 3, containing sections on Human Language Processing, Operator Motion Control, Effects of Environmental Stressors, Display Interfaces, and Control Interfaces (Real/Virtual)
    corecore