469 research outputs found

    Similarity reasoning for local surface analysis and recognition

    Get PDF
    This thesis addresses the similarity assessment of digital shapes, contributing to the analysis of surface characteristics that are independent of the global shape but are crucial to identify a model as belonging to the same manufacture, the same origin/culture or the same typology (color, common decorations, common feature elements, compatible style elements, etc.). To face this problem, the interpretation of the local surface properties is crucial. We go beyond the retrieval of models or surface patches in a collection of models, facing the recognition of geometric patterns across digital models with different overall shape. To address this challenging problem, the use of both engineered and learning-based descriptions are investigated, building one of the first contributions towards the localization and identification of geometric patterns on digital surfaces. Finally, the recognition of patterns adds a further perspective in the exploration of (large) 3D data collections, especially in the cultural heritage domain. Our work contributes to the definition of methods able to locally characterize the geometric and colorimetric surface decorations. Moreover, we showcase our benchmarking activity carried out in recent years on the identification of geometric features and the retrieval of digital models completely characterized by geometric or colorimetric patterns

    Surveying and Three-Dimensional Modeling for Preservation and Structural Analysis of Cultural Heritage

    Get PDF
    Dense point clouds can be used for three important steps in structural analysis, in the field of cultural heritage, regardless of which instrument it was used for acquisition data. Firstly, they allow deriving the geometric part of a finite element (FE) model automatically or semi-automatically. User input is mainly required to complement invisible parts and boundaries of the structure, and to assign meaningful approximate physical parameters. Secondly, FE model obtained from point clouds can be used to estimate better and more precise parameters of the structural analysis, i.e., to train the FE model. Finally, the definition of a correct Level of Detail about the three-dimensional model, deriving from the initial point cloud, can be used to define the limit beyond which the structural analysis is compromised, or anyway less precise. In this work of research, this will be demonstrated using three different case studies of buildings, consisting mainly of masonry, measured through terrestrial laser scanning and photogrammetric acquisitions. This approach is not a typical study for geomatics analysis, but its challenges allow studying benefits and limitations. The results and the proposed approaches could represent a step towards a multidisciplinary approach where Geomatics can play a critical role in the monitoring and civil engineering field. Furthermore, through a geometrical reconstruction, different analyses and comparisons are possible, in order to evaluate how the numerical model is accurate. In fact, the discrepancies between the different results allow to evaluate how, from a geometric and simplified modeling, important details can be lost. This causes, for example, modifications in terms of mass and volume of the structure

    Automatic Reconstruction of Textured 3D Models

    Get PDF
    Three dimensional modeling and visualization of environments is an increasingly important problem. This work addresses the problem of automatic 3D reconstruction and we present a system for unsupervised reconstruction of textured 3D models in the context of modeling indoor environments. We present solutions to all aspects of the modeling process and an integrated system for the automatic creation of large scale 3D models

    Fine Art Pattern Extraction and Recognition

    Get PDF
    This is a reprint of articles from the Special Issue published online in the open access journal Journal of Imaging (ISSN 2313-433X) (available at: https://www.mdpi.com/journal/jimaging/special issues/faper2020)

    The Ledger and Times, May 7, 1959

    Get PDF

    Exploratory graphic arts

    Full text link
    Thesis (Ed.M.)--Boston University, 1947. This item was digitized by the Internet Archive

    Geometric correction of historical Arabic documents

    Get PDF
    Geometric deformations in historical documents significantly influence the success of both Optical Character Recognition (OCR) techniques and human readability. They may have been introduced at any time during the life cycle of a document, from when it was first printed to the time it was digitised by an imaging device. This Thesis focuses on the challenging domain of geometric correction of Arabic historical documents, where background research has highlighted that existing approaches for geometric correction of Latin-script historical documents are not sensitive to the characteristics of text in Arabic documents and therefore cannot be applied successfully. Text line segmentation and baseline detection algorithms have been investigated to propose a new more suitable one for warped Arabic historical document images. Advanced ideas for performing dewarping and geometric restoration on historical Arabic documents, as dictated by the specific characteristics of the problem have been implemented.In addition to developing an algorithm to detect accurate baselines of historical printed Arabic documents the research also contributes a new dataset consisting of historical Arabic documents with different degrees of warping severity.Overall, a new dewarping system, the first for Historical Arabic documents, has been developed taking into account both global and local features of the text image and the patterns of the smooth distortion between text lines. By using the results of the proposed line segmentation and baseline detection methods, it can cope with a variety of distortions, such as page curl, arbitrary warping and fold

    Automatic Reconstruction of Textured 3D Models

    Get PDF
    Three dimensional modeling and visualization of environments is an increasingly important problem. This work addresses the problem of automatic 3D reconstruction and we present a system for unsupervised reconstruction of textured 3D models in the context of modeling indoor environments. We present solutions to all aspects of the modeling process and an integrated system for the automatic creation of large scale 3D models

    AI-assisted patent prior art searching - feasibility study

    Get PDF
    This study seeks to understand the feasibility, technical complexities and effectiveness of using artificial intelligence (AI) solutions to improve operational processes of registering IP rights. The Intellectual Property Office commissioned Cardiff University to undertake this research. The research was funded through the BEIS Regulators’ Pioneer Fund (RPF). The RPF fund was set up to help address barriers to innovation in the UK economy
    • …
    corecore