375,933 research outputs found

    The benefits of using a walking interface to navigate virtual environments

    No full text
    Navigation is the most common interactive task performed in three-dimensional virtual environments (VEs), but it is also a task that users often find difficult. We investigated how body-based information about the translational and rotational components of movement helped participants to perform a navigational search task (finding targets hidden inside boxes in a room-sized space). When participants physically walked around the VE while viewing it on a head-mounted display (HMD), they then performed 90% of trials perfectly, comparable to participants who had performed an equivalent task in the real world during a previous study. By contrast, participants performed less than 50% of trials perfectly if they used a tethered HMD (move by physically turning but pressing a button to translate) or a desktop display (no body-based information). This is the most complex navigational task in which a real-world level of performance has been achieved in a VE. Behavioral data indicates that both translational and rotational body-based information are required to accurately update one's position during navigation, and participants who walked tended to avoid obstacles, even though collision detection was not implemented and feedback not provided. A walking interface would bring immediate benefits to a number of VE applications

    Movement around real and virtual cluttered environments

    Get PDF
    Two experiments investigated participants’ ability to search for targets in a cluttered small-scale space. The first experiment was conducted in the real world with two field of view conditions (full vs. restricted), and participants found the task trivial to perform in both. The second experiment used the same search task but was conducted in a desktop virtual environment (VE), and investigated two movement interfaces and two visual scene conditions. Participants restricted to forward only movement performed the search task quicker and more efficiently (visiting fewer targets) than those who used an interface that allowed more flexible movement (forward, backward, left, right, and diagonal). Also, participants using a high fidelity visual scene performed the task significantly quicker and more efficiently than those who used a low fidelity scene. The performance differences between all the conditions decreased with practice, but the performance of the best VE group approached that of the real-world participants. These results indicate the importance of using high fidelity scenes in VEs, and suggest that the use of a simple control system is sufficient for maintaining ones spatial orientation during searching

    Are tiled display walls needed for astronomy?

    Full text link
    Clustering commodity displays into a Tiled Display Wall (TDW) provides a cost-effective way to create an extremely high resolution display, capable of approaching the image sizes now gen- erated by modern astronomical instruments. Astronomers face the challenge of inspecting single large images, many similar images simultaneously, and heterogeneous but related content. Many research institutions have constructed TDWs on the basis that they will improve the scientific outcomes of astronomical imagery. We test this concept by presenting sample images to astronomers and non- astronomers using a standard desktop display (SDD) and a TDW. These samples include standard English words, wide field galaxy surveys and nebulae mosaics from the Hubble telescope. These experiments show that TDWs provide a better environment for searching for small targets in large images than SDDs. It also shows that astronomers tend to be better at searching images for targets than non-astronomers, both groups are generally better when employing physical navigation as opposed to virtual navigation, and that the combination of two non-astronomers using a TDW rivals the experience of a single astronomer. However, there is also a large distribution in aptitude amongst the participants and the nature of the content also plays a significant role is success.Comment: 19 pages, 15 figures, accepted for publication in PASA (Publications of the Astronomical Society of Australia

    Movement around real and virtual cluttered environments

    Get PDF
    Two experiments investigated participants’ ability to search for targets in a cluttered small-scale space. The first experiment was conducted in the real world with two field of view conditions (full vs. restricted), and participants found the task trivial to perform in both. The second experiment used the same search task but was conducted in a desktop virtual environment (VE), and investigated two movement interfaces and two visual scene conditions. Participants restricted to forward only movement performed the search task quicker and more efficiently (visiting fewer targets) than those who used an interface that allowed more flexible movement (forward, backward, left, right, and diagonal). Also, participants using a high fidelity visual scene performed the task significantly quicker and more efficiently than those who used a low fidelity scene. The performance differences between all the conditions decreased with practice, but the performance of the best VE group approached that of the real-world participants. These results indicate the importance of using high fidelity scenes in VEs, and suggest that the use of a simple control system is sufficient for maintaining ones spatial orientation during searching

    Generating trails automatically, to aid navigation when you revisit an environment

    Get PDF
    A new method for generating trails from a person’s movement through a virtual environment (VE) is described. The method is entirely automatic (no user input is needed), and uses string-matching to identify similar sequences of movement and derive the person’s primary trail. The method was evaluated in a virtual building, and generated trails that substantially reduced the distance participants traveled when they searched for target objects in the building 5-8 weeks after a set of familiarization sessions. Only a modest amount of data (typically five traversals of the building) was required to generate trails that were both effective and stable, and the method was not affected by the order in which objects were visited. The trail generation method models an environment as a graph and, therefore, may be applied to aiding navigation in the real world and information spaces, as well as VEs

    Movement in cluttered virtual environments

    Get PDF
    Imagine walking around a cluttered room but then having little idea of where you have traveled. This frequently happens when people move around small virtual environments (VEs), searching for targets. In three experiments, participants searched small-scale VEs using different movement interfaces, collision response algorithms, and fields of view. Participants' searches were most efficient in terms of distance traveled, time taken, and path followed when the simplest form of movement (view direction) was used in conjunction with a response algorithm that guided ("slipped") them around obstacles when collisions occurred. Unexpectedly, and in both immersive and desktop VEs, participants often had great difficulty finding the targets, despite the fact that participants could see the whole VE if they stood in one place and turned around. Thus, the trivial real-world task used in the present study highlights a basic problem with current VE systems

    Future Livestock Systems: Scenario-guided policy review workshop

    Get PDF
    The recent CCAFS and the LSIL scenarios process focuses on contextual drivers of change for agriculture and food security – climate change and socio-economic changes (e.g. in markets, governance, broad economic developments, infrastructure)

    Investor Protection and the Value Effects of Bank Merger Announcements in Europe and the US

    Get PDF
    Investor protection regimes have been shown to partly explain why the same type of corporate event may attract different investor reactions across countries. We compare the value effects of large bank merger announcements in Europe and the US and find an inverse relationship between the level of investor protection prevalent in the target country and abnormal returns that bidders realize during the announcement period. Accordingly, bidding banks realize higher returns when targeting low protection economies (most European economies) than bidders targeting institutions which operate under a high investor protection regime (the US). We argue that bidding bank shareholders need to be compensated for an increased risk of expropriation by insiders which they face in a low protection environment where takeover markets are illiquid and there are high private benefits of control
    • …
    corecore