557 research outputs found

    Learning to Navigate Cloth using Haptics

    Full text link
    We present a controller that allows an arm-like manipulator to navigate deformable cloth garments in simulation through the use of haptic information. The main challenge of such a controller is to avoid getting tangled in, tearing or punching through the deforming cloth. Our controller aggregates force information from a number of haptic-sensing spheres all along the manipulator for guidance. Based on haptic forces, each individual sphere updates its target location, and the conflicts that arise between this set of desired positions is resolved by solving an inverse kinematic problem with constraints. Reinforcement learning is used to train the controller for a single haptic-sensing sphere, where a training run is terminated (and thus penalized) when large forces are detected due to contact between the sphere and a simplified model of the cloth. In simulation, we demonstrate successful navigation of a robotic arm through a variety of garments, including an isolated sleeve, a jacket, a shirt, and shorts. Our controller out-performs two baseline controllers: one without haptics and another that was trained based on large forces between the sphere and cloth, but without early termination.Comment: Supplementary video available at https://youtu.be/iHqwZPKVd4A. Related publications http://www.cc.gatech.edu/~karenliu/Robotic_dressing.htm

    Deep Learning of Force Manifolds from the Simulated Physics of Robotic Paper Folding

    Full text link
    Robotic manipulation of slender objects is challenging, especially when the induced deformations are large and nonlinear. Traditionally, learning-based control approaches, such as imitation learning, have been used to address deformable material manipulation. These approaches lack generality and often suffer critical failure from a simple switch of material, geometric, and/or environmental (e.g., friction) properties. This article tackles a fundamental but difficult deformable manipulation task: forming a predefined fold in paper with only a single manipulator. A data-driven framework combining physically-accurate simulation and machine learning is used to train a deep neural network capable of predicting the external forces induced on the manipulated paper given a grasp position. We frame the problem using scaling analysis, resulting in a control framework robust against material and geometric changes. Path planning is then carried out over the generated "neural force manifold" to produce robot manipulation trajectories optimized to prevent sliding, with offline trajectory generation finishing 15Ă—\times faster than previous physics-based folding methods. The inference speed of the trained model enables the incorporation of real-time visual feedback to achieve closed-loop sensorimotor control. Real-world experiments demonstrate that our framework can greatly improve robotic manipulation performance compared to state-of-the-art folding strategies, even when manipulating paper objects of various materials and shapes.Comment: Supplementary video is available on YouTube: https://youtu.be/k0nexYGy-P

    Feedback-based Fabric Strip Folding

    Full text link
    Accurate manipulation of a deformable body such as a piece of fabric is difficult because of its many degrees of freedom and unobservable properties affecting its dynamics. To alleviate these challenges, we propose the application of feedback-based control to robotic fabric strip folding. The feedback is computed from the low dimensional state extracted from a camera image. We trained the controller using reinforcement learning in simulation which was calibrated to cover the real fabric strip behaviors. The proposed feedback-based folding was experimentally compared to two state-of-the-art folding methods and our method outperformed both of them in terms of accuracy.Comment: Submitted to IEEE/RSJ IROS201

    DaXBench: Benchmarking Deformable Object Manipulation with Differentiable Physics

    Full text link
    Deformable Object Manipulation (DOM) is of significant importance to both daily and industrial applications. Recent successes in differentiable physics simulators allow learning algorithms to train a policy with analytic gradients through environment dynamics, which significantly facilitates the development of DOM algorithms. However, existing DOM benchmarks are either single-object-based or non-differentiable. This leaves the questions of 1) how a task-specific algorithm performs on other tasks and 2) how a differentiable-physics-based algorithm compares with the non-differentiable ones in general. In this work, we present DaXBench, a differentiable DOM benchmark with a wide object and task coverage. DaXBench includes 9 challenging high-fidelity simulated tasks, covering rope, cloth, and liquid manipulation with various difficulty levels. To better understand the performance of general algorithms on different DOM tasks, we conduct comprehensive experiments over representative DOM methods, ranging from planning to imitation learning and reinforcement learning. In addition, we provide careful empirical studies of existing decision-making algorithms based on differentiable physics, and discuss their limitations, as well as potential future directions.Comment: ICLR 2023 (Oral

    Data-driven robotic manipulation of cloth-like deformable objects : the present, challenges and future prospects

    Get PDF
    Manipulating cloth-like deformable objects (CDOs) is a long-standing problem in the robotics community. CDOs are flexible (non-rigid) objects that do not show a detectable level of compression strength while two points on the article are pushed towards each other and include objects such as ropes (1D), fabrics (2D) and bags (3D). In general, CDOs’ many degrees of freedom (DoF) introduce severe self-occlusion and complex state–action dynamics as significant obstacles to perception and manipulation systems. These challenges exacerbate existing issues of modern robotic control methods such as imitation learning (IL) and reinforcement learning (RL). This review focuses on the application details of data-driven control methods on four major task families in this domain: cloth shaping, knot tying/untying, dressing and bag manipulation. Furthermore, we identify specific inductive biases in these four domains that present challenges for more general IL and RL algorithms.Publisher PDFPeer reviewe
    • …
    corecore