868 research outputs found

    A Hybrid Approach for Data Analytics for Internet of Things

    Full text link
    The vision of the Internet of Things is to allow currently unconnected physical objects to be connected to the internet. There will be an extremely large number of internet connected devices that will be much more than the number of human being in the world all producing data. These data will be collected and delivered to the cloud for processing, especially with a view of finding meaningful information to then take action. However, ideally the data needs to be analysed locally to increase privacy, give quick responses to people and to reduce use of network and storage resources. To tackle these problems, distributed data analytics can be proposed to collect and analyse the data either in the edge or fog devices. In this paper, we explore a hybrid approach which means that both innetwork level and cloud level processing should work together to build effective IoT data analytics in order to overcome their respective weaknesses and use their specific strengths. Specifically, we collected raw data locally and extracted features by applying data fusion techniques on the data on resource constrained devices to reduce the data and then send the extracted features to the cloud for processing. We evaluated the accuracy and data consumption over network and thus show that it is feasible to increase privacy and maintain accuracy while reducing data communication demands.Comment: Accepted to be published in the Proceedings of the 7th ACM International Conference on the Internet of Things (IoT 2017

    Statistical Review of Health Monitoring Models for Real-Time Hospital Scenarios

    Get PDF
    Health Monitoring System Models (HMSMs) need speed, efficiency, and security to work. Cascading components ensure data collection, storage, communication, retrieval, and privacy in these models. Researchers propose many methods to design such models, varying in scalability, multidomain efficiency, flexibility, usage and deployment, computational complexity, cost of deployment, security level, feature usability, and other performance metrics. Thus, HMSM designers struggle to find the best models for their application-specific deployments. They must test and validate different models, which increases design time and cost, affecting deployment feasibility. This article discusses secure HMSMs' application-specific advantages, feature-specific limitations, context-specific nuances, and deployment-specific future research scopes to reduce model selection ambiguity. The models based on the Internet of Things (IoT), Machine Learning Models (MLMs), Blockchain Models, Hashing Methods, Encryption Methods, Distributed Computing Configurations, and Bioinspired Models have better Quality of Service (QoS) and security than their counterparts. Researchers can find application-specific models. This article compares the above models in deployment cost, attack mitigation performance, scalability, computational complexity, and monitoring applicability. This comparative analysis helps readers choose HMSMs for context-specific application deployments. This article also devises performance measuring metrics called Health Monitoring Model Metrics (HM3) to compare the performance of various models based on accuracy, precision, delay, scalability, computational complexity, energy consumption, and security
    • …
    corecore