487 research outputs found

    Health Care Equity Through Intelligent Edge Computing and Augmented Reality/Virtual Reality: A Systematic Review

    Get PDF
    Intellectual capital is a scarce resource in the healthcare industry. Making the most of this resource is the first step toward achieving a completely intelligent healthcare system. However, most existing centralized and deep learning-based systems are unable to adapt to the growing volume of global health records and face application issues. To balance the scarcity of healthcare resources, the emerging trend of IoMT (Internet of Medical Things) and edge computing will be very practical and cost-effective. A full examination of the transformational role of intelligent edge computing in the IoMT era to attain health care equity is offered in this research. Intelligent edge computing-aided distribution and collaborative information management is a possible approach for a long-term digital healthcare system. Furthermore, IEC (Intelligent Edge Computing) encourages digital health data to be processed only at the edge, minimizing the amount of information exchanged with central servers/the internet. This significantly increases the privacy of digital health data. Another critical component of a sustainable healthcare system is affordability in digital healthcare. Affordability in digital healthcare is another key component of a sustainable healthcare system. Despite its importance, it has received little attention due to its complexity. In isolated and rural areas where expensive equipment is unavailable, IEC with AR / VR, also known as edge device shadow, can play a significant role in the inexpensive data collection process. Healthcare equity becomes a reality by combining intelligent edge device shadows and edge computing

    Deep Learning and parallelization of Meta-heuristic Methods for IoT Cloud

    Get PDF
    Healthcare 4.0 is one of the Fourth Industrial Revolution’s outcomes that make a big revolution in the medical field. Healthcare 4.0 came with more facilities advantages that improved the average life expectancy and reduced population mortality. This paradigm depends on intelligent medical devices (wearable devices, sensors), which are supposed to generate a massive amount of data that need to be analyzed and treated with appropriate data-driven algorithms powered by Artificial Intelligence such as machine learning and deep learning (DL). However, one of the most significant limits of DL techniques is the long time required for the training process. Meanwhile, the realtime application of DL techniques, especially in sensitive domains such as healthcare, is still an open question that needs to be treated. On the other hand, meta-heuristic achieved good results in optimizing machine learning models. The Internet of Things (IoT) integrates billions of smart devices that can communicate with one another with minimal human intervention. IoT technologies are crucial in enhancing several real-life smart applications that can improve life quality. Cloud Computing has emerged as a key enabler for IoT applications because it provides scalable and on-demand, anytime, anywhere access to the computing resources. In this thesis, we are interested in improving the efficacity and performance of Computer-aided diagnosis systems in the medical field by decreasing the complexity of the model and increasing the quality of data. To accomplish this, three contributions have been proposed. First, we proposed a computer aid diagnosis system for neonatal seizures detection using metaheuristics and convolutional neural network (CNN) model to enhance the system’s performance by optimizing the CNN model. Secondly, we focused our interest on the covid-19 pandemic and proposed a computer-aided diagnosis system for its detection. In this contribution, we investigate Marine Predator Algorithm to optimize the configuration of the CNN model that will improve the system’s performance. In the third contribution, we aimed to improve the performance of the computer aid diagnosis system for covid-19. This contribution aims to discover the power of optimizing the data using different AI methods such as Principal Component Analysis (PCA), Discrete wavelet transform (DWT), and Teager Kaiser Energy Operator (TKEO). The proposed methods and the obtained results were validated with comparative studies using benchmark and public medical data

    Computational Intelligence in Healthcare

    Get PDF
    This book is a printed edition of the Special Issue Computational Intelligence in Healthcare that was published in Electronic

    Computational Intelligence in Healthcare

    Get PDF
    The number of patient health data has been estimated to have reached 2314 exabytes by 2020. Traditional data analysis techniques are unsuitable to extract useful information from such a vast quantity of data. Thus, intelligent data analysis methods combining human expertise and computational models for accurate and in-depth data analysis are necessary. The technological revolution and medical advances made by combining vast quantities of available data, cloud computing services, and AI-based solutions can provide expert insight and analysis on a mass scale and at a relatively low cost. Computational intelligence (CI) methods, such as fuzzy models, artificial neural networks, evolutionary algorithms, and probabilistic methods, have recently emerged as promising tools for the development and application of intelligent systems in healthcare practice. CI-based systems can learn from data and evolve according to changes in the environments by taking into account the uncertainty characterizing health data, including omics data, clinical data, sensor, and imaging data. The use of CI in healthcare can improve the processing of such data to develop intelligent solutions for prevention, diagnosis, treatment, and follow-up, as well as for the analysis of administrative processes. The present Special Issue on computational intelligence for healthcare is intended to show the potential and the practical impacts of CI techniques in challenging healthcare applications

    AI Techniques for COVID-19

    Get PDF
    © 2013 IEEE. Artificial Intelligence (AI) intent is to facilitate human limits. It is getting a standpoint on human administrations, filled by the growing availability of restorative clinical data and quick progression of insightful strategies. Motivated by the need to highlight the need for employing AI in battling the COVID-19 Crisis, this survey summarizes the current state of AI applications in clinical administrations while battling COVID-19. Furthermore, we highlight the application of Big Data while understanding this virus. We also overview various intelligence techniques and methods that can be applied to various types of medical information-based pandemic. We classify the existing AI techniques in clinical data analysis, including neural systems, classical SVM, and edge significant learning. Also, an emphasis has been made on regions that utilize AI-oriented cloud computing in combating various similar viruses to COVID-19. This survey study is an attempt to benefit medical practitioners and medical researchers in overpowering their faced difficulties while handling COVID-19 big data. The investigated techniques put forth advances in medical data analysis with an exactness of up to 90%. We further end up with a detailed discussion about how AI implementation can be a huge advantage in combating various similar viruses

    AI Techniques for COVID-19

    Get PDF
    © 2013 IEEE. Artificial Intelligence (AI) intent is to facilitate human limits. It is getting a standpoint on human administrations, filled by the growing availability of restorative clinical data and quick progression of insightful strategies. Motivated by the need to highlight the need for employing AI in battling the COVID-19 Crisis, this survey summarizes the current state of AI applications in clinical administrations while battling COVID-19. Furthermore, we highlight the application of Big Data while understanding this virus. We also overview various intelligence techniques and methods that can be applied to various types of medical information-based pandemic. We classify the existing AI techniques in clinical data analysis, including neural systems, classical SVM, and edge significant learning. Also, an emphasis has been made on regions that utilize AI-oriented cloud computing in combating various similar viruses to COVID-19. This survey study is an attempt to benefit medical practitioners and medical researchers in overpowering their faced difficulties while handling COVID-19 big data. The investigated techniques put forth advances in medical data analysis with an exactness of up to 90%. We further end up with a detailed discussion about how AI implementation can be a huge advantage in combating various similar viruses

    Networking Architecture and Key Technologies for Human Digital Twin in Personalized Healthcare: A Comprehensive Survey

    Full text link
    Digital twin (DT), refers to a promising technique to digitally and accurately represent actual physical entities. One typical advantage of DT is that it can be used to not only virtually replicate a system's detailed operations but also analyze the current condition, predict future behaviour, and refine the control optimization. Although DT has been widely implemented in various fields, such as smart manufacturing and transportation, its conventional paradigm is limited to embody non-living entities, e.g., robots and vehicles. When adopted in human-centric systems, a novel concept, called human digital twin (HDT) has thus been proposed. Particularly, HDT allows in silico representation of individual human body with the ability to dynamically reflect molecular status, physiological status, emotional and psychological status, as well as lifestyle evolutions. These prompt the expected application of HDT in personalized healthcare (PH), which can facilitate remote monitoring, diagnosis, prescription, surgery and rehabilitation. However, despite the large potential, HDT faces substantial research challenges in different aspects, and becomes an increasingly popular topic recently. In this survey, with a specific focus on the networking architecture and key technologies for HDT in PH applications, we first discuss the differences between HDT and conventional DTs, followed by the universal framework and essential functions of HDT. We then analyze its design requirements and challenges in PH applications. After that, we provide an overview of the networking architecture of HDT, including data acquisition layer, data communication layer, computation layer, data management layer and data analysis and decision making layer. Besides reviewing the key technologies for implementing such networking architecture in detail, we conclude this survey by presenting future research directions of HDT

    Fog Computing in Medical Internet-of-Things: Architecture, Implementation, and Applications

    Full text link
    In the era when the market segment of Internet of Things (IoT) tops the chart in various business reports, it is apparently envisioned that the field of medicine expects to gain a large benefit from the explosion of wearables and internet-connected sensors that surround us to acquire and communicate unprecedented data on symptoms, medication, food intake, and daily-life activities impacting one's health and wellness. However, IoT-driven healthcare would have to overcome many barriers, such as: 1) There is an increasing demand for data storage on cloud servers where the analysis of the medical big data becomes increasingly complex, 2) The data, when communicated, are vulnerable to security and privacy issues, 3) The communication of the continuously collected data is not only costly but also energy hungry, 4) Operating and maintaining the sensors directly from the cloud servers are non-trial tasks. This book chapter defined Fog Computing in the context of medical IoT. Conceptually, Fog Computing is a service-oriented intermediate layer in IoT, providing the interfaces between the sensors and cloud servers for facilitating connectivity, data transfer, and queryable local database. The centerpiece of Fog computing is a low-power, intelligent, wireless, embedded computing node that carries out signal conditioning and data analytics on raw data collected from wearables or other medical sensors and offers efficient means to serve telehealth interventions. We implemented and tested an fog computing system using the Intel Edison and Raspberry Pi that allows acquisition, computing, storage and communication of the various medical data such as pathological speech data of individuals with speech disorders, Phonocardiogram (PCG) signal for heart rate estimation, and Electrocardiogram (ECG)-based Q, R, S detection.Comment: 29 pages, 30 figures, 5 tables. Keywords: Big Data, Body Area Network, Body Sensor Network, Edge Computing, Fog Computing, Medical Cyberphysical Systems, Medical Internet-of-Things, Telecare, Tele-treatment, Wearable Devices, Chapter in Handbook of Large-Scale Distributed Computing in Smart Healthcare (2017), Springe

    Deep neural networks in the cloud: Review, applications, challenges and research directions

    Get PDF
    Deep neural networks (DNNs) are currently being deployed as machine learning technology in a wide range of important real-world applications. DNNs consist of a huge number of parameters that require millions of floating-point operations (FLOPs) to be executed both in learning and prediction modes. A more effective method is to implement DNNs in a cloud computing system equipped with centralized servers and data storage sub-systems with high-speed and high-performance computing capabilities. This paper presents an up-to-date survey on current state-of-the-art deployed DNNs for cloud computing. Various DNN complexities associated with different architectures are presented and discussed alongside the necessities of using cloud computing. We also present an extensive overview of different cloud computing platforms for the deployment of DNNs and discuss them in detail. Moreover, DNN applications already deployed in cloud computing systems are reviewed to demonstrate the advantages of using cloud computing for DNNs. The paper emphasizes the challenges of deploying DNNs in cloud computing systems and provides guidance on enhancing current and new deployments.The EGIA project (KK-2022/00119The Consolidated Research Group MATHMODE (IT1456-22

    Involving machine learning techniques in heart disease diagnosis: a performance analysis

    Get PDF
    Artificial intelligence is a science that is growing at a tremendous speed every day and has become an essential part of many domains, including the medical domain. Therefore, countless artificial intelligence applications can be seen in the medical domain at various levels, which are employed to enhance early diagnosis and prediction and reduce the risks associated with many diseases, including heart diseases. In this article, machine learning techniques (logistic regression, random forest, artificial neural network, support vector machines, and k-nearest neighbors) are utilized to diagnose heart disease from the Cleveland Clinic dataset got from the University of California Irvine machine learning (UCL) repository and Kaggle platform then create a comparison between the performance of these techniques. In addition, some literature related to machine learning and deep learning techniques that aim to provide reasonable solutions in monitoring, detecting, diagnosing, and predicting heart disease and how these technologies assist in making health decisions are reviewed. Ten studies are selected and summarized by the authors published between 2017 and 2022 are illustrated. After executing a series of tests, it is seen that the most profitable performance in diagnosing heart disease is the support vector machines, with a diagnostic accuracy of 96%. This article has concluded that these techniques play a significant and influential role in assisting physicians and health care workers in analyzing heart patients' data, making health decisions, and saving patients' lives
    • …
    corecore