1,023 research outputs found

    Non Invasive Foetal Monitoring with a Combined ECG - PCG System

    Get PDF
    Although modern ultrasound provides remarkable images and biophysical measures, the technology is expensive and the observations are only available over a short time. Longer term monitoring is achieved in a clinical setting using ultrasonic Doppler cardiotocography (CTG) but this has a number of limitations. Some pathologies and some anomalies of cardiac functioning are not detectable with CTG. Moreover, although frequent and/or long-term foetal heart rate (FHR) monitoring is recommended, mainly in high risk pregnancies, there is a lack of established evidence for safe ultrasound irradiation exposure to the foetus for extended periods (Ang et al., 2006). Finally, high quality ultrasound devices are too expensive and not approved for home care use. In fact, there is a remarkable mismatch between ability to examine a foetus in a clinical setting, and the almost complete absence of technology that permits longer term monitoring of a foetus at home. Therefore, in the last years, many efforts (Hany et al., 1989; Jimenez et al., 1999; Kovacs et al., 2000; Mittra et al., 2008; Moghavvemi et al., 2003; Nagal, 1986; Ruffo et al., 2010; Talbert et al., 1986; Varady et al., 2003) have been attempted by the scientific community to find a suitable alternative

    Uterine myoelectrical activity as biomarker of successful induction with Dinoprostone: Influence of parity

    Full text link
    [EN] The prolonged latent phase of Induction of Labour (IOL) is associated with increased risks of maternal mortality and morbidity. Electrohysterography (EHG) has outperformed traditional clinical measures monitoring labour progress. Although parity is agreed to be of particular relevance to the success of IOL, no previous EHG¿related studies have been found in the literature. We thus aimed to identify EHG¿biomarkers to predict IOL success (active phase of labour in¿¿¿24¿h) and determine the influence of the myoelectrical response on the parity of this group. Statistically significant and sustained differences between the successful and failed groups were found from 150¿min in amplitude and non¿linear parameters, especially in Spectral Entropy and in their progression rates. In the nulliparous¿parous comparison, parous women showed statistically significantly higher amplitude progression rate. These biomarkers would therefore be useful for early detection of the risk of induction failure and would help to develop more robust and generalizable IOL success¿prediction systems.This work was supported by the Spanish Ministry of Economy and Competitiveness and the European Regional Development Fund (MCIU/AEI/FEDER, UE RTI2018-094449-A-I00-AR and PID2021-124038OB-I00). Funding for open access charge: CRUE-Universitat Politècnica de ValènciaDiaz-Martinez, A.; Monfort-Ortiz, R.; Ye Lin, Y.; Garcia-Casado, J.; Nieto-Tous, M.; Nieto Del-Amor, F.; Diago-Almela, VJ.... (2023). Uterine myoelectrical activity as biomarker of successful induction with Dinoprostone: Influence of parity. Biocybernetics and Biomedical Engineering (Online). 43(1):142-156. https://doi.org/10.1016/j.bbe.2022.12.00414215643

    Symbolic Dynamics Analysis: a new methodology for foetal heart rate variability analysis

    Get PDF
    Cardiotocography (CTG) is a widespread foetal diagnostic methods. However, it lacks of objectivity and reproducibility since its dependence on observer's expertise. To overcome these limitations, more objective methods for CTG interpretation have been proposed. In particular, many developed techniques aim to assess the foetal heart rate variability (FHRV). Among them, some methodologies from nonlinear systems theory have been applied to the study of FHRV. All the techniques have proved to be helpful in specific cases. Nevertheless, none of them is more reliable than the others. Therefore, an in-depth study is necessary. The aim of this work is to deepen the FHRV analysis through the Symbolic Dynamics Analysis (SDA), a nonlinear technique already successfully employed for HRV analysis. Thanks to its simplicity of interpretation, it could be a useful tool for clinicians. We performed a literature study involving about 200 references on HRV and FHRV analysis; approximately 100 works were focused on non-linear techniques. Then, in order to compare linear and non-linear methods, we carried out a multiparametric study. 580 antepartum recordings of healthy fetuses were examined. Signals were processed using an updated software for CTG analysis and a new developed software for generating simulated CTG traces. Finally, statistical tests and regression analyses were carried out for estimating relationships among extracted indexes and other clinical information. Results confirm that none of the employed techniques is more reliable than the others. Moreover, in agreement with the literature, each analysis should take into account two relevant parameters, the foetal status and the week of gestation. Regarding the SDA, results show its promising capabilities in FHRV analysis. It allows recognizing foetal status, gestation week and global variability of FHR signals, even better than other methods. Nevertheless, further studies, which should involve even pathological cases, are necessary to establish its reliability.La Cardiotocografia (CTG) è una diffusa tecnica di diagnostica fetale. Nonostante ciò, la sua interpretazione soffre di forte variabilità intra- e inter- osservatore. Per superare tali limiti, sono stati proposti più oggettivi metodi di analisi. Particolare attenzione è stata rivolta alla variabilità della frequenza cardiaca fetale (FHRV). Nel presente lavoro abbiamo suddiviso le tecniche di analisi della FHRV in tradizionali, o lineari, e meno convenzionali, o non-lineari. Tutte si sono rivelate efficaci in casi specifici ma nessuna si è dimostrata più utile delle altre. Pertanto, abbiamo ritenuto necessario effettuare un’indagine più dettagliata. In particolare, scopo della tesi è stato approfondire una specifica metodologia non-lineare, la Symbolic Dynamics Analysis (SDA), data la sua notevole semplicità di interpretazione che la renderebbe un potenziale strumento di ausilio all’attività clinica. Sono stati esaminati all’incirca 200 riferimenti bibliografici sull’analisi di HRV e FHRV; di questi, circa 100 articoli specificamente incentrati sulle tecniche non-lineari. E’ stata condotta un’analisi multiparametrica su 580 tracciati CTG di feti sani per confrontare le metodologie adottate. Sono stati realizzati due software, uno per l’analisi dei segnali CTG reali e l’altro per la generazione di tracciati CTG simulati. Infine, sono state effettuate analisi statistiche e di regressione per esaminare le correlazioni tra indici calcolati e parametri di interesse clinico. I risultati dimostrano che nessuno degli indici calcolati risulta più vantaggioso rispetto agli altri. Inoltre, in accordo con la letteratura, lo stato del feto e le settimane di gestazione sono parametri di riferimento da tenere sempre in considerazione per ogni analisi effettuata. Riguardo la SDA, essa risulta utile all’analisi della FHRV, permettendo di distinguere – meglio o al pari di altre tecniche – lo stato del feto, la settimana di gestazione e la variabilità complessiva del segnale. Tuttavia, sono necessari ulteriori studi, che includano anche casi di feti patologici, per confermare queste evidenze

    Intelligent Pattern Analysis of the Foetal Electrocardiogram

    Get PDF
    The aim of the project on which this thesis is based is to develop reliable techniques for foetal electrocardiogram (ECG) based monitoring, to reduce incidents of unnecessary medical intervention and foetal injury during labour. World-wide electronic foetal monitoring is based almost entirely on the cardiotocogram (CTG), which is a continuous display of the foetal heart rate (FHR) pattern together with the contraction of the womb. Despite the widespread use of the CTG, there is no significant improvement in foetal outcome. In the UK alone it is estimated that birth related negligence claims cost the health authorities over £400M per-annum. An expert system, known as INFANT, has recently been developed to assist CTG interpretation. However, the CTG alone does not always provide all the information required to improve the outcome of labour. The widespread use of ECG analysis has been hindered by the difficulties with poor signal quality and the difficulties in applying the specialised knowledge required for interpreting ECG patterns, in association with other events in labour, in an objective way. A fundamental investigation and development of optimal signal enhancement techniques that maximise the available information in the ECG signal, along with different techniques for detecting individual waveforms from poor quality signals, has been carried out. To automate the visual interpretation of the ECG waveform, novel techniques have been developed that allow reliable extraction of key features and hence allow a detailed ECG waveform analysis. Fuzzy logic is used to automatically classify the ECG waveform shape using these features by using knowledge that was elicited from expert sources and derived from example data. This allows the subtle changes in the ECG waveform to be automatically detected in relation to other events in labour, and thus improve the clinicians position for making an accurate diagnosis. To ensure the interpretation is based on reliable information and takes place in the proper context, a new and sensitive index for assessing the quality of the ECG has been developed. New techniques to capture, for the first time in machine form, the clinical expertise / guidelines for electronic foetal monitoring have been developed based on fuzzy logic and finite state machines, The software model provides a flexible framework to further develop and optimise rules for ECG pattern analysis. The signal enhancement, QRS detection and pattern recognition of important ECG waveform shapes have had extensive testing and results are presented. Results show that no significant loss of information is incurred as a result of the signal enhancement and feature extraction techniques

    A Comprehensive Review of Techniques for Processing and Analyzing Fetal Heart Rate Signals

    Get PDF
    The availability of standardized guidelines regarding the use of electronic fetal monitoring (EFM) in clinical practice has not effectively helped to solve the main drawbacks of fetal heart rate (FHR) surveillance methodology, which still presents inter- and intra-observer variability as well as uncertainty in the classification of unreassuring or risky FHR recordings. Given the clinical relevance of the interpretation of FHR traces as well as the role of FHR as a marker of fetal wellbeing autonomous nervous system development, many different approaches for computerized processing and analysis of FHR patterns have been proposed in the literature. The objective of this review is to describe the techniques, methodologies, and algorithms proposed in this field so far, reporting their main achievements and discussing the value they brought to the scientific and clinical community. The review explores the following two main approaches to the processing and analysis of FHR signals: traditional (or linear) methodologies, namely, time and frequency domain analysis, and less conventional (or nonlinear) techniques. In this scenario, the emerging role and the opportunities offered by Artificial Intelligence tools, representing the future direction of EFM, are also discussed with a specific focus on the use of Artificial Neural Networks, whose application to the analysis of accelerations in FHR signals is also examined in a case study conducted by the authors

    Detection and Processing Techniques of FECG Signal for Fetal Monitoring

    Get PDF
    Fetal electrocardiogram (FECG) signal contains potentially precise information that could assist clinicians in making more appropriate and timely decisions during labor. The ultimate reason for the interest in FECG signal analysis is in clinical diagnosis and biomedical applications. The extraction and detection of the FECG signal from composite abdominal signals with powerful and advance methodologies are becoming very important requirements in fetal monitoring. The purpose of this review paper is to illustrate the various methodologies and developed algorithms on FECG signal detection and analysis to provide efficient and effective ways of understanding the FECG signal and its nature for fetal monitoring. A comparative study has been carried out to show the performance and accuracy of various methods of FECG signal analysis for fetal monitoring. Finally, this paper further focused some of the hardware implementations using electrical signals for monitoring the fetal heart rate. This paper opens up a passage for researchers, physicians, and end users to advocate an excellent understanding of FECG signal and its analysis procedures for fetal heart rate monitoring system

    Theoretical and technical aspects of using the Doppler umbilical flow waveform to assess compromised foetal circulation

    Get PDF
    Includes bibliography.The aim of this thesis was to investigate the feasibility of using the shape of the umbilical flow waveform, obtained clinically with Doppler ultrasound, to monitor the condition growth impaired foetuses. This aim was addressed via the following . 1. Survey the literature to obtain information regarding : a) the foetal blood flow distribution for normal foetuses. b) the effect of placental pathology and maternal hyperoxygenation in compromised foetuses. 2. Model the foetal circulation to investigate the effect, on the umbilical flow waveform, of physiological changes resulting from placental insufficiency. 3. Perform a theoretical and practical assessment of Doppler ultrasound by considering its suitability in monitoring foetal condition, through alterations in the umbilical blood flow waveform shape. 4. Clinically gather and analyse umbilical blood flow waveforms from foetuses currently on a trial to investigate appropriate protocols for the assessment of maternal hyperoxygenation

    N on - Invasive Feto - Maternal Well - Being Monitoring: A Review of Methods

    Get PDF

    Multiparametric Investigation of Dynamics in Fetal Heart Rate Signals

    Get PDF
    In the field of electronic fetal health monitoring, computerized analysis of fetal heart rate (FHR) signals has emerged as a valid decision-support tool in the assessment of fetal wellbeing. Despite the availability of several approaches to analyze the variability of FHR signals (namely the FHRV), there are still shadows hindering a comprehensive understanding of how linear and nonlinear dynamics are involved in the control of the fetal heart rhythm. In this study, we propose a straightforward processing and modeling route for a deeper understanding of the relationships between the characteristics of the FHR signal. A multiparametric modeling and investigation of the factors influencing the FHR accelerations, chosen as major indicator of fetal wellbeing, is carried out by means of linear and nonlinear techniques, blockwise dimension reduction, and artificial neural networks. The obtained results show that linear features are more influential compared to nonlinear ones in the modeling of HRV in healthy fetuses. In addition, the results suggest that the investigation of nonlinear dynamics and the use of predictive tools in the field of FHRV should be undertaken carefully and limited to defined pregnancy periods and FHR mean values to provide interpretable and reliable information to clinicians and researchers
    corecore