8,134 research outputs found
Wolter Optics for Neutron Focusing
Focusing optics based on Wolter optical geometries developed for x-ray grazing incidence beams can be designed for neutron beams. Wolter optics are formed by grazing incidence reflections from two concentric conic sections (for example, a paraboloid and a hyperboloid). This has transformed observational X-ray astronomy by increasing the sensitivity by many orders of magnitude for research in astrophysics and cosmology. To increase the collection area, many reflecting mirrors of different diameters are nested with a common focal plane. These mirrors are fabricated using nickel-electroformed replication techniques. We apply these ideas to neutron focusing using nickel mirrors. We show an initial test of a conical mirror using a beam of cold neutrons. key words: electroformed nickel replication, focusing optics, grazing angle incidence, mirror reflection, neutron focusing, Wolter optic
A time lens for high resolution neutron time of flight spectrometers
We examine in analytic and numeric ways the imaging effects of temporal
neutron lenses created by traveling magnetic fields. For fields of parabolic
shape we derive the imaging equations, investigate the time-magnification, the
evolution of the phase space element, the gain factor and the effect of finite
beam size. The main aberration effects are calculated numerically. The system
is technologically feasible and should convert neutron time of flight
instruments from pinhole- to imaging configuration in time, thus enhancing
intensity and/or time resolution. New fields of application for high resolution
spectrometry may be opened.Comment: 8 pages, 11 figure
Background study for the pn-CCD detector of CERN Axion Solar Telescope
The CERN Axion Solar Telescope (CAST) experiment searches for axions from the
Sun converted into photons with energies up to around 10 keV via the inverse
Primakoff effect in the high magnetic field of a superconducting Large Hadron
Collider (LHC) prototype magnet. A backside illuminated pn-CCD detector in
conjunction with an X-ray mirror optics is one of the three detectors used in
CAST to register the expected photon signal. Since this signal is very rare and
different background components (environmental gamma radiation, cosmic rays,
intrinsic radioactive impurities in the set-up, ...) entangle it, a detailed
study of the detector background has been undertaken with the aim to understand
and further reduce the background level of the detector. The analysis is based
on measured data taken during the Phase I of CAST and on Monte Carlo
simulations of different background components. This study will show that the
observed background level (at a rate of (8.00+-0.07)10^-5 counts/cm^2/s/keV
between 1 and 7 keV) seems to be dominated by the external gamma background due
to usual activities at the experimental site, while radioactive impurities in
the detector itself and cosmic neutrons could make just smaller contribution.Comment: Comments: 10 pages, 9 figures and images, submitted to Astroparticle
Physic
Mirrors for slow neutrons from holographic nanoparticle-polymer free-standing film-gratings
We report on successful tests of holographically arranged grating-structures
in nanoparticle-polymer composites in the form of 100 microns thin
free-standing films, i.e. without sample containers or covers that could cause
unwanted absorption/incoherent scattering of very-cold neutrons. Despite their
large diameter of 2 cm, the flexible materials are of high optical quality and
yield mirror-like reflectivity of about 90% for neutrons of 4.1 nm wavelength
Axisymmetric Grazing-Incidence Focusing Optics for Small-Angle Neutron Scattering
We propose and design novel axisymmetric focusing mirrors, known as Wolter
optics, for small-angle neutron scattering instruments. Ray-tracing simulations
show that using the mirrors can result in more than an order-of-magnitude
increase in the neutron flux reaching detectors, while decreasing the minimum
wave vector transfer. Such mirrors are made of Ni using a mature technology.
They can be coated with neutron supermirror multilayers, and multiple mirrors
can be nested to improve their flux-collection ability. Thus, these mirrors
offer simple and flexible means of significantly improving existing and future
SANS instruments. In addition, short SANS instruments might become possible,
especially at compact neutron sources, when high-resolution detectors are
combined with Wolter optics
Generic guide concepts for the European Spallation Source
The construction of the European Spallation Source (ESS) faces many
challenges from the neutron beam transport point of view: The spallation source
is specified as being driven by a 5 MW beam of protons, each with 2 GeV energy,
and yet the requirements in instrument background suppression relative to
measured signal vary between 10 and 10. The energetic particles,
particularly above 20 MeV, which are expected to be produced in abundance in
the target, have to be filtered in order to make the beamlines safe,
operational and provide good quality measurements with low background.
We present generic neutron guides of short and medium length instruments
which are optimized for good performance at minimal cost. Direct line of sight
to the source is avoided twice, with either the first point out of line of
sight or both being inside the bunker (20\,m) to minimize shielding costs.
These guide geometries are regarded as a baseline to define standards for
instruments to be constructed at ESS. They are used to find commonalities and
develop principles and solutions for common problems. Lastly, we report the
impact of employing the over-illumination concept to mitigate losses from
random misalignment passively, and that over-illumination should be used
sparingly in key locations to be effective. For more widespread alignment
issues, a more direct, active approach is likely to be needed
Correction of Optical Aberrations in Elliptic Neutron Guides
Modern, nonlinear ballistic neutron guides are an attractive concept in
neutron beam delivery and instrumentation, because they offer increased
performance over straight or linearly tapered guides. However, like other
ballistic geometries they have the potential to create significantly
non-trivial instrumental resolution functions. We address the source of the
most prominent optical aberration, namely coma, and we show that for extended
sources the off-axis rays have a different focal length from on-axis rays,
leading to multiple reflections in the guide system. We illustrate how the
interplay between coma, sources of finite size, and mirrors with non-perfect
reflectivity can therefore conspire to produce uneven distributions in the
neutron beam divergence, the source of complicated resolution functions. To
solve these problems, we propose a hybrid elliptic-parabolic guide geometry.
Using this new kind of neutron guide shape, it is possible to condition the
neutron beam and remove almost all of the aberrations, whilst providing the
same performance in beam current as a standard elliptic neutron guide. We
highlight the positive implications for a number of neutron scattering
instrument types that this new shape can bring.Comment: Presented at NOP2010 Conference in Alpe d'Huez, France, in March 201
- …
